| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uncom |
|- ( A u. { -oo } ) = ( { -oo } u. A ) |
| 2 |
1
|
supeq1i |
|- sup ( ( A u. { -oo } ) , RR* , < ) = sup ( ( { -oo } u. A ) , RR* , < ) |
| 3 |
|
mnfxr |
|- -oo e. RR* |
| 4 |
|
snssi |
|- ( -oo e. RR* -> { -oo } C_ RR* ) |
| 5 |
3 4
|
mp1i |
|- ( A C_ RR* -> { -oo } C_ RR* ) |
| 6 |
|
id |
|- ( A C_ RR* -> A C_ RR* ) |
| 7 |
|
xrltso |
|- < Or RR* |
| 8 |
|
supsn |
|- ( ( < Or RR* /\ -oo e. RR* ) -> sup ( { -oo } , RR* , < ) = -oo ) |
| 9 |
7 3 8
|
mp2an |
|- sup ( { -oo } , RR* , < ) = -oo |
| 10 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
| 11 |
|
mnfle |
|- ( sup ( A , RR* , < ) e. RR* -> -oo <_ sup ( A , RR* , < ) ) |
| 12 |
10 11
|
syl |
|- ( A C_ RR* -> -oo <_ sup ( A , RR* , < ) ) |
| 13 |
9 12
|
eqbrtrid |
|- ( A C_ RR* -> sup ( { -oo } , RR* , < ) <_ sup ( A , RR* , < ) ) |
| 14 |
|
supxrun |
|- ( ( { -oo } C_ RR* /\ A C_ RR* /\ sup ( { -oo } , RR* , < ) <_ sup ( A , RR* , < ) ) -> sup ( ( { -oo } u. A ) , RR* , < ) = sup ( A , RR* , < ) ) |
| 15 |
5 6 13 14
|
syl3anc |
|- ( A C_ RR* -> sup ( ( { -oo } u. A ) , RR* , < ) = sup ( A , RR* , < ) ) |
| 16 |
2 15
|
eqtrid |
|- ( A C_ RR* -> sup ( ( A u. { -oo } ) , RR* , < ) = sup ( A , RR* , < ) ) |