Description: A syllogism inference. (Contributed by NM, 2-May-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylani.1 | |- ( ph -> ch ) |
|
sylani.2 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
||
Assertion | sylani | |- ( ps -> ( ( ph /\ th ) -> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylani.1 | |- ( ph -> ch ) |
|
2 | sylani.2 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
|
3 | 1 | a1i | |- ( ps -> ( ph -> ch ) ) |
4 | 3 2 | syland | |- ( ps -> ( ( ph /\ th ) -> ta ) ) |