Metamath Proof Explorer


Theorem pjhmopidm

Description: Two ways to express the set of all projection operators. (Contributed by NM, 24-Apr-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjhmopidm
|- ran projh = { t e. HrmOp | ( t o. t ) = t }

Proof

Step Hyp Ref Expression
1 dfpjop
 |-  ( t e. ran projh <-> ( t e. HrmOp /\ ( t o. t ) = t ) )
2 1 abbi2i
 |-  ran projh = { t | ( t e. HrmOp /\ ( t o. t ) = t ) }
3 df-rab
 |-  { t e. HrmOp | ( t o. t ) = t } = { t | ( t e. HrmOp /\ ( t o. t ) = t ) }
4 2 3 eqtr4i
 |-  ran projh = { t e. HrmOp | ( t o. t ) = t }