Metamath Proof Explorer


Theorem dfpjop

Description: Definition of projection operator in Hughes p. 47, except that we do not need linearity to be explicit by virtue of hmoplin . (Contributed by NM, 24-Apr-2006) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Assertion dfpjop T ran proj T HrmOp T T = T

Proof

Step Hyp Ref Expression
1 pjmfn proj Fn C
2 fvelrnb proj Fn C T ran proj x C proj x = T
3 1 2 ax-mp T ran proj x C proj x = T
4 pjhmop x C proj x HrmOp
5 pjidmco x C proj x proj x = proj x
6 4 5 jca x C proj x HrmOp proj x proj x = proj x
7 eleq1 proj x = T proj x HrmOp T HrmOp
8 id proj x = T proj x = T
9 8 8 coeq12d proj x = T proj x proj x = T T
10 9 8 eqeq12d proj x = T proj x proj x = proj x T T = T
11 7 10 anbi12d proj x = T proj x HrmOp proj x proj x = proj x T HrmOp T T = T
12 6 11 syl5ibcom x C proj x = T T HrmOp T T = T
13 12 rexlimiv x C proj x = T T HrmOp T T = T
14 3 13 sylbi T ran proj T HrmOp T T = T
15 hmopidmpj T HrmOp T T = T T = proj ran T
16 hmopidmch T HrmOp T T = T ran T C
17 fnfvelrn proj Fn C ran T C proj ran T ran proj
18 1 16 17 sylancr T HrmOp T T = T proj ran T ran proj
19 15 18 eqeltrd T HrmOp T T = T T ran proj
20 14 19 impbii T ran proj T HrmOp T T = T