| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hods.1 |
⊢ 𝑅 : ℋ ⟶ ℋ |
| 2 |
|
hods.2 |
⊢ 𝑆 : ℋ ⟶ ℋ |
| 3 |
|
hods.3 |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 4 |
1
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑅 ‘ 𝑥 ) ∈ ℋ ) |
| 5 |
2
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 6 |
3
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 7 |
|
hvsubadd |
⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑅 ‘ 𝑥 ) ) ) |
| 8 |
4 5 6 7
|
syl3anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑅 ‘ 𝑥 ) ) ) |
| 9 |
|
hodval |
⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 10 |
1 2 9
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑅 ‘ 𝑥 ) −ℎ ( 𝑆 ‘ 𝑥 ) ) = ( 𝑇 ‘ 𝑥 ) ) ) |
| 12 |
|
hosval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 13 |
2 3 12
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ↔ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑅 ‘ 𝑥 ) ) ) |
| 15 |
8 11 14
|
3bitr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ) ) |
| 16 |
15
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ) |
| 17 |
1 2
|
hosubcli |
⊢ ( 𝑅 −op 𝑆 ) : ℋ ⟶ ℋ |
| 18 |
17 3
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑅 −op 𝑆 ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( 𝑅 −op 𝑆 ) = 𝑇 ) |
| 19 |
2 3
|
hoaddcli |
⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
| 20 |
19 1
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( 𝑅 ‘ 𝑥 ) ↔ ( 𝑆 +op 𝑇 ) = 𝑅 ) |
| 21 |
16 18 20
|
3bitr3i |
⊢ ( ( 𝑅 −op 𝑆 ) = 𝑇 ↔ ( 𝑆 +op 𝑇 ) = 𝑅 ) |