Metamath Proof Explorer


Theorem hodsi

Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 R:
hods.2 S:
hods.3 T:
Assertion hodsi R-opS=TS+opT=R

Proof

Step Hyp Ref Expression
1 hods.1 R:
2 hods.2 S:
3 hods.3 T:
4 1 ffvelcdmi xRx
5 2 ffvelcdmi xSx
6 3 ffvelcdmi xTx
7 hvsubadd RxSxTxRx-Sx=TxSx+Tx=Rx
8 4 5 6 7 syl3anc xRx-Sx=TxSx+Tx=Rx
9 hodval R:S:xR-opSx=Rx-Sx
10 1 2 9 mp3an12 xR-opSx=Rx-Sx
11 10 eqeq1d xR-opSx=TxRx-Sx=Tx
12 hosval S:T:xS+opTx=Sx+Tx
13 2 3 12 mp3an12 xS+opTx=Sx+Tx
14 13 eqeq1d xS+opTx=RxSx+Tx=Rx
15 8 11 14 3bitr4d xR-opSx=TxS+opTx=Rx
16 15 ralbiia xR-opSx=TxxS+opTx=Rx
17 1 2 hosubcli R-opS:
18 17 3 hoeqi xR-opSx=TxR-opS=T
19 2 3 hoaddcli S+opT:
20 19 1 hoeqi xS+opTx=RxS+opT=R
21 16 18 20 3bitr3i R-opS=TS+opT=R