Metamath Proof Explorer


Theorem hoaddassi

Description: Associativity of sum of Hilbert space operators. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 R:
hods.2 S:
hods.3 T:
Assertion hoaddassi R+opS+opT=R+opS+opT

Proof

Step Hyp Ref Expression
1 hods.1 R:
2 hods.2 S:
3 hods.3 T:
4 hosval R:S:xR+opSx=Rx+Sx
5 1 2 4 mp3an12 xR+opSx=Rx+Sx
6 5 oveq1d xR+opSx+Tx=Rx+Sx+Tx
7 1 2 hoaddcli R+opS:
8 hosval R+opS:T:xR+opS+opTx=R+opSx+Tx
9 7 3 8 mp3an12 xR+opS+opTx=R+opSx+Tx
10 hosval S:T:xS+opTx=Sx+Tx
11 2 3 10 mp3an12 xS+opTx=Sx+Tx
12 11 oveq2d xRx+S+opTx=Rx+Sx+Tx
13 2 3 hoaddcli S+opT:
14 hosval R:S+opT:xR+opS+opTx=Rx+S+opTx
15 1 13 14 mp3an12 xR+opS+opTx=Rx+S+opTx
16 1 ffvelcdmi xRx
17 2 ffvelcdmi xSx
18 3 ffvelcdmi xTx
19 ax-hvass RxSxTxRx+Sx+Tx=Rx+Sx+Tx
20 16 17 18 19 syl3anc xRx+Sx+Tx=Rx+Sx+Tx
21 12 15 20 3eqtr4d xR+opS+opTx=Rx+Sx+Tx
22 6 9 21 3eqtr4d xR+opS+opTx=R+opS+opTx
23 22 rgen xR+opS+opTx=R+opS+opTx
24 7 3 hoaddcli R+opS+opT:
25 1 13 hoaddcli R+opS+opT:
26 24 25 hoeqi xR+opS+opTx=R+opS+opTxR+opS+opT=R+opS+opT
27 23 26 mpbi R+opS+opT=R+opS+opT