Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
|- G e. CH |
2 |
|
pjclem1.2 |
|- H e. CH |
3 |
1 2
|
pjclem2 |
|- ( G C_H H -> ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) ) |
4 |
1 2
|
pjclem4 |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) ) |
5 |
1 2
|
pjclem3 |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> ( ( projh ` G ) o. ( projh ` ( _|_ ` H ) ) ) = ( ( projh ` ( _|_ ` H ) ) o. ( projh ` G ) ) ) |
6 |
2
|
choccli |
|- ( _|_ ` H ) e. CH |
7 |
1 6
|
pjclem4 |
|- ( ( ( projh ` G ) o. ( projh ` ( _|_ ` H ) ) ) = ( ( projh ` ( _|_ ` H ) ) o. ( projh ` G ) ) -> ( ( projh ` G ) o. ( projh ` ( _|_ ` H ) ) ) = ( projh ` ( G i^i ( _|_ ` H ) ) ) ) |
8 |
5 7
|
syl |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> ( ( projh ` G ) o. ( projh ` ( _|_ ` H ) ) ) = ( projh ` ( G i^i ( _|_ ` H ) ) ) ) |
9 |
4 8
|
oveq12d |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) +op ( ( projh ` G ) o. ( projh ` ( _|_ ` H ) ) ) ) = ( ( projh ` ( G i^i H ) ) +op ( projh ` ( G i^i ( _|_ ` H ) ) ) ) ) |
10 |
|
df-iop |
|- Iop = ( projh ` ~H ) |
11 |
10
|
coeq2i |
|- ( ( projh ` G ) o. Iop ) = ( ( projh ` G ) o. ( projh ` ~H ) ) |
12 |
1
|
pjfi |
|- ( projh ` G ) : ~H --> ~H |
13 |
12
|
hoid1i |
|- ( ( projh ` G ) o. Iop ) = ( projh ` G ) |
14 |
11 13
|
eqtr3i |
|- ( ( projh ` G ) o. ( projh ` ~H ) ) = ( projh ` G ) |
15 |
2
|
pjtoi |
|- ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) = ( projh ` ~H ) |
16 |
15
|
coeq2i |
|- ( ( projh ` G ) o. ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ) = ( ( projh ` G ) o. ( projh ` ~H ) ) |
17 |
2
|
pjfi |
|- ( projh ` H ) : ~H --> ~H |
18 |
6
|
pjfi |
|- ( projh ` ( _|_ ` H ) ) : ~H --> ~H |
19 |
1 17 18
|
pjsdii |
|- ( ( projh ` G ) o. ( ( projh ` H ) +op ( projh ` ( _|_ ` H ) ) ) ) = ( ( ( projh ` G ) o. ( projh ` H ) ) +op ( ( projh ` G ) o. ( projh ` ( _|_ ` H ) ) ) ) |
20 |
16 19
|
eqtr3i |
|- ( ( projh ` G ) o. ( projh ` ~H ) ) = ( ( ( projh ` G ) o. ( projh ` H ) ) +op ( ( projh ` G ) o. ( projh ` ( _|_ ` H ) ) ) ) |
21 |
14 20
|
eqtr3i |
|- ( projh ` G ) = ( ( ( projh ` G ) o. ( projh ` H ) ) +op ( ( projh ` G ) o. ( projh ` ( _|_ ` H ) ) ) ) |
22 |
|
inss2 |
|- ( G i^i H ) C_ H |
23 |
1
|
choccli |
|- ( _|_ ` G ) e. CH |
24 |
2 23
|
chub2i |
|- H C_ ( ( _|_ ` G ) vH H ) |
25 |
22 24
|
sstri |
|- ( G i^i H ) C_ ( ( _|_ ` G ) vH H ) |
26 |
1 2
|
chdmm3i |
|- ( _|_ ` ( G i^i ( _|_ ` H ) ) ) = ( ( _|_ ` G ) vH H ) |
27 |
25 26
|
sseqtrri |
|- ( G i^i H ) C_ ( _|_ ` ( G i^i ( _|_ ` H ) ) ) |
28 |
1 2
|
chincli |
|- ( G i^i H ) e. CH |
29 |
1 6
|
chincli |
|- ( G i^i ( _|_ ` H ) ) e. CH |
30 |
28 29
|
pjscji |
|- ( ( G i^i H ) C_ ( _|_ ` ( G i^i ( _|_ ` H ) ) ) -> ( projh ` ( ( G i^i H ) vH ( G i^i ( _|_ ` H ) ) ) ) = ( ( projh ` ( G i^i H ) ) +op ( projh ` ( G i^i ( _|_ ` H ) ) ) ) ) |
31 |
27 30
|
ax-mp |
|- ( projh ` ( ( G i^i H ) vH ( G i^i ( _|_ ` H ) ) ) ) = ( ( projh ` ( G i^i H ) ) +op ( projh ` ( G i^i ( _|_ ` H ) ) ) ) |
32 |
9 21 31
|
3eqtr4g |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> ( projh ` G ) = ( projh ` ( ( G i^i H ) vH ( G i^i ( _|_ ` H ) ) ) ) ) |
33 |
28 29
|
chjcli |
|- ( ( G i^i H ) vH ( G i^i ( _|_ ` H ) ) ) e. CH |
34 |
1 33
|
pj11i |
|- ( ( projh ` G ) = ( projh ` ( ( G i^i H ) vH ( G i^i ( _|_ ` H ) ) ) ) <-> G = ( ( G i^i H ) vH ( G i^i ( _|_ ` H ) ) ) ) |
35 |
32 34
|
sylib |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> G = ( ( G i^i H ) vH ( G i^i ( _|_ ` H ) ) ) ) |
36 |
1 2
|
cmbri |
|- ( G C_H H <-> G = ( ( G i^i H ) vH ( G i^i ( _|_ ` H ) ) ) ) |
37 |
35 36
|
sylibr |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> G C_H H ) |
38 |
3 37
|
impbii |
|- ( G C_H H <-> ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) ) |