| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjclem1.1 |
|- G e. CH |
| 2 |
|
pjclem1.2 |
|- H e. CH |
| 3 |
|
incom |
|- ( G i^i H ) = ( H i^i G ) |
| 4 |
3
|
fveq2i |
|- ( projh ` ( G i^i H ) ) = ( projh ` ( H i^i G ) ) |
| 5 |
1 2
|
pjclem1 |
|- ( G C_H H -> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) ) |
| 6 |
1 2
|
cmcmi |
|- ( G C_H H <-> H C_H G ) |
| 7 |
2 1
|
pjclem1 |
|- ( H C_H G -> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` ( H i^i G ) ) ) |
| 8 |
6 7
|
sylbi |
|- ( G C_H H -> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` ( H i^i G ) ) ) |
| 9 |
4 5 8
|
3eqtr4a |
|- ( G C_H H -> ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) ) |