Metamath Proof Explorer


Theorem pjclem2

Description: Lemma for projection commutation theorem. (Contributed by NM, 17-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1
|- G e. CH
pjclem1.2
|- H e. CH
Assertion pjclem2
|- ( G C_H H -> ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) )

Proof

Step Hyp Ref Expression
1 pjclem1.1
 |-  G e. CH
2 pjclem1.2
 |-  H e. CH
3 incom
 |-  ( G i^i H ) = ( H i^i G )
4 3 fveq2i
 |-  ( projh ` ( G i^i H ) ) = ( projh ` ( H i^i G ) )
5 1 2 pjclem1
 |-  ( G C_H H -> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) )
6 1 2 cmcmi
 |-  ( G C_H H <-> H C_H G )
7 2 1 pjclem1
 |-  ( H C_H G -> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` ( H i^i G ) ) )
8 6 7 sylbi
 |-  ( G C_H H -> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` ( H i^i G ) ) )
9 4 5 8 3eqtr4a
 |-  ( G C_H H -> ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) )