Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjclem1.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
|
incom |
⊢ ( 𝐺 ∩ 𝐻 ) = ( 𝐻 ∩ 𝐺 ) |
4 |
3
|
fveq2i |
⊢ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) = ( projℎ ‘ ( 𝐻 ∩ 𝐺 ) ) |
5 |
1 2
|
pjclem1 |
⊢ ( 𝐺 𝐶ℋ 𝐻 → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
6 |
1 2
|
cmcmi |
⊢ ( 𝐺 𝐶ℋ 𝐻 ↔ 𝐻 𝐶ℋ 𝐺 ) |
7 |
2 1
|
pjclem1 |
⊢ ( 𝐻 𝐶ℋ 𝐺 → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ 𝐺 ) ) ) |
8 |
6 7
|
sylbi |
⊢ ( 𝐺 𝐶ℋ 𝐻 → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐻 ∩ 𝐺 ) ) ) |
9 |
4 5 8
|
3eqtr4a |
⊢ ( 𝐺 𝐶ℋ 𝐻 → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |