Metamath Proof Explorer


Theorem pjclem2

Description: Lemma for projection commutation theorem. (Contributed by NM, 17-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion pjclem2 ( 𝐺 𝐶 𝐻 → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 pjclem1.1 𝐺C
2 pjclem1.2 𝐻C
3 incom ( 𝐺𝐻 ) = ( 𝐻𝐺 )
4 3 fveq2i ( proj ‘ ( 𝐺𝐻 ) ) = ( proj ‘ ( 𝐻𝐺 ) )
5 1 2 pjclem1 ( 𝐺 𝐶 𝐻 → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( 𝐺𝐻 ) ) )
6 1 2 cmcmi ( 𝐺 𝐶 𝐻𝐻 𝐶 𝐺 )
7 2 1 pjclem1 ( 𝐻 𝐶 𝐺 → ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) = ( proj ‘ ( 𝐻𝐺 ) ) )
8 6 7 sylbi ( 𝐺 𝐶 𝐻 → ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) = ( proj ‘ ( 𝐻𝐺 ) ) )
9 4 5 8 3eqtr4a ( 𝐺 𝐶 𝐻 → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )