Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjclem1.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
1 2
|
cmbri |
⊢ ( 𝐺 𝐶ℋ 𝐻 ↔ 𝐺 = ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝐺 = ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) → ( projℎ ‘ 𝐺 ) = ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
5 |
3 4
|
sylbi |
⊢ ( 𝐺 𝐶ℋ 𝐻 → ( projℎ ‘ 𝐺 ) = ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
6 |
|
inss2 |
⊢ ( 𝐺 ∩ 𝐻 ) ⊆ 𝐻 |
7 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
8 |
2 7
|
chub2i |
⊢ 𝐻 ⊆ ( ( ⊥ ‘ 𝐺 ) ∨ℋ 𝐻 ) |
9 |
1 2
|
chdmm3i |
⊢ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) = ( ( ⊥ ‘ 𝐺 ) ∨ℋ 𝐻 ) |
10 |
8 9
|
sseqtrri |
⊢ 𝐻 ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
11 |
6 10
|
sstri |
⊢ ( 𝐺 ∩ 𝐻 ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
12 |
1 2
|
chincli |
⊢ ( 𝐺 ∩ 𝐻 ) ∈ Cℋ |
13 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
14 |
1 13
|
chincli |
⊢ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ∈ Cℋ |
15 |
12 14
|
pjscji |
⊢ ( ( 𝐺 ∩ 𝐻 ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) → ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
16 |
11 15
|
ax-mp |
⊢ ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
17 |
16
|
eqeq2i |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ↔ ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
18 |
|
coeq2 |
⊢ ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) ) |
19 |
12
|
pjfi |
⊢ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) : ℋ ⟶ ℋ |
20 |
14
|
pjfi |
⊢ ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) : ℋ ⟶ ℋ |
21 |
2 19 20
|
pjsdii |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
22 |
12 2
|
pjss1coi |
⊢ ( ( 𝐺 ∩ 𝐻 ) ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
23 |
6 22
|
mpbi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) |
24 |
2 14
|
pjorthcoi |
⊢ ( 𝐻 ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = 0hop ) |
25 |
10 24
|
ax-mp |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = 0hop |
26 |
23 25
|
oveq12i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op 0hop ) |
27 |
19
|
hoaddid1i |
⊢ ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op 0hop ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) |
28 |
21 26 27
|
3eqtri |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) |
29 |
28
|
eqeq2i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
30 |
|
coeq2 |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) ) |
31 |
|
inss1 |
⊢ ( 𝐺 ∩ 𝐻 ) ⊆ 𝐺 |
32 |
12 1
|
pjss1coi |
⊢ ( ( 𝐺 ∩ 𝐻 ) ⊆ 𝐺 ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
33 |
31 32
|
mpbi |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) |
34 |
30 33
|
eqtrdi |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
35 |
29 34
|
sylbi |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
36 |
18 35
|
syl |
⊢ ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
37 |
17 36
|
sylbi |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ ( ( 𝐺 ∩ 𝐻 ) ∨ℋ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
38 |
5 37
|
syl |
⊢ ( 𝐺 𝐶ℋ 𝐻 → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
39 |
1 2
|
cmcm3i |
⊢ ( 𝐺 𝐶ℋ 𝐻 ↔ ( ⊥ ‘ 𝐺 ) 𝐶ℋ 𝐻 ) |
40 |
7 2
|
cmbri |
⊢ ( ( ⊥ ‘ 𝐺 ) 𝐶ℋ 𝐻 ↔ ( ⊥ ‘ 𝐺 ) = ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∨ℋ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
41 |
39 40
|
bitri |
⊢ ( 𝐺 𝐶ℋ 𝐻 ↔ ( ⊥ ‘ 𝐺 ) = ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∨ℋ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
42 |
|
fveq2 |
⊢ ( ( ⊥ ‘ 𝐺 ) = ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∨ℋ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) → ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) = ( projℎ ‘ ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∨ℋ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
43 |
|
inss2 |
⊢ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ⊆ 𝐻 |
44 |
2 1
|
chub2i |
⊢ 𝐻 ⊆ ( 𝐺 ∨ℋ 𝐻 ) |
45 |
1 2
|
chdmm4i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) = ( 𝐺 ∨ℋ 𝐻 ) |
46 |
44 45
|
sseqtrri |
⊢ 𝐻 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) |
47 |
43 46
|
sstri |
⊢ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) |
48 |
7 2
|
chincli |
⊢ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∈ Cℋ |
49 |
7 13
|
chincli |
⊢ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ∈ Cℋ |
50 |
48 49
|
pjscji |
⊢ ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) → ( projℎ ‘ ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∨ℋ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
51 |
47 50
|
ax-mp |
⊢ ( projℎ ‘ ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∨ℋ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
52 |
51
|
eqeq2i |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) = ( projℎ ‘ ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∨ℋ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ↔ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) = ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
53 |
|
coeq2 |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) = ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) ) |
54 |
48
|
pjfi |
⊢ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) : ℋ ⟶ ℋ |
55 |
49
|
pjfi |
⊢ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) : ℋ ⟶ ℋ |
56 |
2 54 55
|
pjsdii |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) |
57 |
48 2
|
pjss1coi |
⊢ ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) ) = ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) ) |
58 |
43 57
|
mpbi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) ) = ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) |
59 |
2 49
|
pjorthcoi |
⊢ ( 𝐻 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = 0hop ) |
60 |
46 59
|
ax-mp |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) = 0hop |
61 |
58 60
|
oveq12i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) = ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op 0hop ) |
62 |
54
|
hoaddid1i |
⊢ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op 0hop ) = ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) |
63 |
56 61 62
|
3eqtri |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) = ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) |
64 |
63
|
eqeq2i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) = ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) ) |
65 |
|
coeq2 |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) = ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) ) ) |
66 |
1 13
|
chub1i |
⊢ 𝐺 ⊆ ( 𝐺 ∨ℋ ( ⊥ ‘ 𝐻 ) ) |
67 |
1 2
|
chdmm2i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) = ( 𝐺 ∨ℋ ( ⊥ ‘ 𝐻 ) ) |
68 |
66 67
|
sseqtrri |
⊢ 𝐺 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) |
69 |
1 48
|
pjorthcoi |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) ) = 0hop ) |
70 |
68 69
|
ax-mp |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) ) = 0hop |
71 |
65 70
|
eqtrdi |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) = ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) = 0hop ) |
72 |
64 71
|
sylbi |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) = 0hop ) |
73 |
53 72
|
syl |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) = ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ) +op ( projℎ ‘ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) = 0hop ) |
74 |
52 73
|
sylbi |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) = ( projℎ ‘ ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∨ℋ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) = 0hop ) |
75 |
42 74
|
syl |
⊢ ( ( ⊥ ‘ 𝐺 ) = ( ( ( ⊥ ‘ 𝐺 ) ∩ 𝐻 ) ∨ℋ ( ( ⊥ ‘ 𝐺 ) ∩ ( ⊥ ‘ 𝐻 ) ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) = 0hop ) |
76 |
41 75
|
sylbi |
⊢ ( 𝐺 𝐶ℋ 𝐻 → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) = 0hop ) |
77 |
38 76
|
oveq12d |
⊢ ( 𝐺 𝐶ℋ 𝐻 → ( ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) +op ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) +op 0hop ) ) |
78 |
|
df-iop |
⊢ Iop = ( projℎ ‘ ℋ ) |
79 |
78
|
coeq2i |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ Iop ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ℋ ) ) |
80 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
81 |
80
|
hoid1i |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ Iop ) = ( projℎ ‘ 𝐻 ) |
82 |
79 81
|
eqtr3i |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ℋ ) ) = ( projℎ ‘ 𝐻 ) |
83 |
1
|
pjtoi |
⊢ ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) = ( projℎ ‘ ℋ ) |
84 |
83
|
coeq2i |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ℋ ) ) |
85 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
86 |
7
|
pjfi |
⊢ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) : ℋ ⟶ ℋ |
87 |
2 85 86
|
pjsdii |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( ( projℎ ‘ 𝐺 ) +op ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) |
88 |
84 87
|
eqtr3i |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ℋ ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) |
89 |
82 88
|
eqtr3i |
⊢ ( projℎ ‘ 𝐻 ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) |
90 |
89
|
coeq2i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) ) |
91 |
80 85
|
hocofi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) : ℋ ⟶ ℋ |
92 |
80 86
|
hocofi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) : ℋ ⟶ ℋ |
93 |
1 91 92
|
pjsdii |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) +op ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) ) |
94 |
90 93
|
eqtr2i |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) +op ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ) ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) |
95 |
77 94 27
|
3eqtr3g |
⊢ ( 𝐺 𝐶ℋ 𝐻 → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |