| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoaddrid.1 |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 2 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
| 3 |
|
hosval |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0hop : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 0hop ‘ 𝑥 ) ) ) |
| 4 |
1 2 3
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 0hop ‘ 𝑥 ) ) ) |
| 5 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 0hop ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ 0ℎ ) ) |
| 7 |
1
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 8 |
|
ax-hvaddid |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) +ℎ 0ℎ ) = ( 𝑇 ‘ 𝑥 ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) +ℎ 0ℎ ) = ( 𝑇 ‘ 𝑥 ) ) |
| 10 |
4 6 9
|
3eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) |
| 12 |
1 2
|
hoaddcli |
⊢ ( 𝑇 +op 0hop ) : ℋ ⟶ ℋ |
| 13 |
12 1
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( 𝑇 +op 0hop ) = 𝑇 ) |
| 14 |
11 13
|
mpbi |
⊢ ( 𝑇 +op 0hop ) = 𝑇 |