Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjclem1.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
|
df-iop |
⊢ Iop = ( projℎ ‘ ℋ ) |
4 |
3
|
coeq2i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ Iop ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) |
5 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
6 |
5
|
hoid1i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ Iop ) = ( projℎ ‘ 𝐺 ) |
7 |
4 6
|
eqtr3i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) = ( projℎ ‘ 𝐺 ) |
8 |
5
|
hoid1ri |
⊢ ( Iop ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) |
9 |
3
|
coeq1i |
⊢ ( Iop ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) |
10 |
7 8 9
|
3eqtr2i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) = ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) |
11 |
10
|
oveq1i |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
12 |
|
oveq2 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ) |
13 |
11 12
|
syl5eq |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ) |
14 |
|
helch |
⊢ ℋ ∈ Cℋ |
15 |
14
|
pjfi |
⊢ ( projℎ ‘ ℋ ) : ℋ ⟶ ℋ |
16 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
17 |
1 15 16
|
pjddii |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
18 |
15 16 5
|
hocsubdiri |
⊢ ( ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
19 |
13 17 18
|
3eqtr4g |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
20 |
2
|
pjoci |
⊢ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) |
21 |
20
|
coeq2i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
22 |
20
|
coeq1i |
⊢ ( ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) |
23 |
19 21 22
|
3eqtr3g |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ) |