| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjclem1.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjclem1.2 |
⊢ 𝐻 ∈ Cℋ |
| 3 |
|
df-iop |
⊢ Iop = ( projℎ ‘ ℋ ) |
| 4 |
3
|
coeq2i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ Iop ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) |
| 5 |
1
|
pjfi |
⊢ ( projℎ ‘ 𝐺 ) : ℋ ⟶ ℋ |
| 6 |
5
|
hoid1i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ Iop ) = ( projℎ ‘ 𝐺 ) |
| 7 |
4 6
|
eqtr3i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) = ( projℎ ‘ 𝐺 ) |
| 8 |
5
|
hoid1ri |
⊢ ( Iop ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) |
| 9 |
3
|
coeq1i |
⊢ ( Iop ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) |
| 10 |
7 8 9
|
3eqtr2i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) = ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) |
| 11 |
10
|
oveq1i |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 12 |
|
oveq2 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ) |
| 13 |
11 12
|
eqtrid |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ) |
| 14 |
|
helch |
⊢ ℋ ∈ Cℋ |
| 15 |
14
|
pjfi |
⊢ ( projℎ ‘ ℋ ) : ℋ ⟶ ℋ |
| 16 |
2
|
pjfi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ ℋ |
| 17 |
1 15 16
|
pjddii |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ℋ ) ) −op ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 18 |
15 16 5
|
hocsubdiri |
⊢ ( ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( ( projℎ ‘ ℋ ) ∘ ( projℎ ‘ 𝐺 ) ) −op ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
| 19 |
13 17 18
|
3eqtr4g |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ) = ( ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
| 20 |
2
|
pjoci |
⊢ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) |
| 21 |
20
|
coeq2i |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
| 22 |
20
|
coeq1i |
⊢ ( ( ( projℎ ‘ ℋ ) −op ( projℎ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) |
| 23 |
19 21 22
|
3eqtr3g |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ∘ ( projℎ ‘ 𝐺 ) ) ) |