Description: Two subspaces commute iff their projections commute. Lemma 4 of Kalmbach p. 67. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjclem1.1 | |
|
pjclem1.2 | |
||
Assertion | pjci | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjclem1.1 | |
|
2 | pjclem1.2 | |
|
3 | 1 2 | pjclem2 | |
4 | 1 2 | pjclem4 | |
5 | 1 2 | pjclem3 | |
6 | 2 | choccli | |
7 | 1 6 | pjclem4 | |
8 | 5 7 | syl | |
9 | 4 8 | oveq12d | |
10 | df-iop | |
|
11 | 10 | coeq2i | |
12 | 1 | pjfi | |
13 | 12 | hoid1i | |
14 | 11 13 | eqtr3i | |
15 | 2 | pjtoi | |
16 | 15 | coeq2i | |
17 | 2 | pjfi | |
18 | 6 | pjfi | |
19 | 1 17 18 | pjsdii | |
20 | 16 19 | eqtr3i | |
21 | 14 20 | eqtr3i | |
22 | inss2 | |
|
23 | 1 | choccli | |
24 | 2 23 | chub2i | |
25 | 22 24 | sstri | |
26 | 1 2 | chdmm3i | |
27 | 25 26 | sseqtrri | |
28 | 1 2 | chincli | |
29 | 1 6 | chincli | |
30 | 28 29 | pjscji | |
31 | 27 30 | ax-mp | |
32 | 9 21 31 | 3eqtr4g | |
33 | 28 29 | chjcli | |
34 | 1 33 | pj11i | |
35 | 32 34 | sylib | |
36 | 1 2 | cmbri | |
37 | 35 36 | sylibr | |
38 | 3 37 | impbii | |