Metamath Proof Explorer


Theorem pjci

Description: Two subspaces commute iff their projections commute. Lemma 4 of Kalmbach p. 67. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1 GC
pjclem1.2 HC
Assertion pjci G𝐶HprojGprojH=projHprojG

Proof

Step Hyp Ref Expression
1 pjclem1.1 GC
2 pjclem1.2 HC
3 1 2 pjclem2 G𝐶HprojGprojH=projHprojG
4 1 2 pjclem4 projGprojH=projHprojGprojGprojH=projGH
5 1 2 pjclem3 projGprojH=projHprojGprojGprojH=projHprojG
6 2 choccli HC
7 1 6 pjclem4 projGprojH=projHprojGprojGprojH=projGH
8 5 7 syl projGprojH=projHprojGprojGprojH=projGH
9 4 8 oveq12d projGprojH=projHprojGprojGprojH+opprojGprojH=projGH+opprojGH
10 df-iop Iop=proj
11 10 coeq2i projGIop=projGproj
12 1 pjfi projG:
13 12 hoid1i projGIop=projG
14 11 13 eqtr3i projGproj=projG
15 2 pjtoi projH+opprojH=proj
16 15 coeq2i projGprojH+opprojH=projGproj
17 2 pjfi projH:
18 6 pjfi projH:
19 1 17 18 pjsdii projGprojH+opprojH=projGprojH+opprojGprojH
20 16 19 eqtr3i projGproj=projGprojH+opprojGprojH
21 14 20 eqtr3i projG=projGprojH+opprojGprojH
22 inss2 GHH
23 1 choccli GC
24 2 23 chub2i HGH
25 22 24 sstri GHGH
26 1 2 chdmm3i GH=GH
27 25 26 sseqtrri GHGH
28 1 2 chincli GHC
29 1 6 chincli GHC
30 28 29 pjscji GHGHprojGHGH=projGH+opprojGH
31 27 30 ax-mp projGHGH=projGH+opprojGH
32 9 21 31 3eqtr4g projGprojH=projHprojGprojG=projGHGH
33 28 29 chjcli GHGHC
34 1 33 pj11i projG=projGHGHG=GHGH
35 32 34 sylib projGprojH=projHprojGG=GHGH
36 1 2 cmbri G𝐶HG=GHGH
37 35 36 sylibr projGprojH=projHprojGG𝐶H
38 3 37 impbii G𝐶HprojGprojH=projHprojG