Metamath Proof Explorer


Theorem pj11i

Description: One-to-one correspondence of projection and subspace. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjsumt.1 GC
pjsumt.2 HC
Assertion pj11i projG=projHG=H

Proof

Step Hyp Ref Expression
1 pjsumt.1 GC
2 pjsumt.2 HC
3 rneq projG=projHranprojG=ranprojH
4 1 pjrni ranprojG=G
5 2 pjrni ranprojH=H
6 3 4 5 3eqtr3g projG=projHG=H
7 fveq2 G=HprojG=projH
8 6 7 impbii projG=projHG=H