Description: One-to-one correspondence of projection and subspace. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjsumt.1 | ⊢ 𝐺 ∈ Cℋ | |
| pjsumt.2 | ⊢ 𝐻 ∈ Cℋ | ||
| Assertion | pj11i | ⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ↔ 𝐺 = 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjsumt.1 | ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjsumt.2 | ⊢ 𝐻 ∈ Cℋ | |
| 3 | rneq | ⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ran ( projℎ ‘ 𝐺 ) = ran ( projℎ ‘ 𝐻 ) ) | |
| 4 | 1 | pjrni | ⊢ ran ( projℎ ‘ 𝐺 ) = 𝐺 |
| 5 | 2 | pjrni | ⊢ ran ( projℎ ‘ 𝐻 ) = 𝐻 |
| 6 | 3 4 5 | 3eqtr3g | ⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → 𝐺 = 𝐻 ) |
| 7 | fveq2 | ⊢ ( 𝐺 = 𝐻 → ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ) | |
| 8 | 6 7 | impbii | ⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ↔ 𝐺 = 𝐻 ) |