Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
|- G e. CH |
2 |
|
pjclem1.2 |
|- H e. CH |
3 |
1 2
|
pjclem4 |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) ) |
4 |
|
pjmfn |
|- projh Fn CH |
5 |
1 2
|
chincli |
|- ( G i^i H ) e. CH |
6 |
|
fnfvelrn |
|- ( ( projh Fn CH /\ ( G i^i H ) e. CH ) -> ( projh ` ( G i^i H ) ) e. ran projh ) |
7 |
4 5 6
|
mp2an |
|- ( projh ` ( G i^i H ) ) e. ran projh |
8 |
3 7
|
eqeltrdi |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh ) |
9 |
|
pjadj2 |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh -> ( adjh ` ( ( projh ` G ) o. ( projh ` H ) ) ) = ( ( projh ` G ) o. ( projh ` H ) ) ) |
10 |
1
|
pjbdlni |
|- ( projh ` G ) e. BndLinOp |
11 |
2
|
pjbdlni |
|- ( projh ` H ) e. BndLinOp |
12 |
10 11
|
adjcoi |
|- ( adjh ` ( ( projh ` G ) o. ( projh ` H ) ) ) = ( ( adjh ` ( projh ` H ) ) o. ( adjh ` ( projh ` G ) ) ) |
13 |
|
pjadj3 |
|- ( H e. CH -> ( adjh ` ( projh ` H ) ) = ( projh ` H ) ) |
14 |
2 13
|
ax-mp |
|- ( adjh ` ( projh ` H ) ) = ( projh ` H ) |
15 |
|
pjadj3 |
|- ( G e. CH -> ( adjh ` ( projh ` G ) ) = ( projh ` G ) ) |
16 |
1 15
|
ax-mp |
|- ( adjh ` ( projh ` G ) ) = ( projh ` G ) |
17 |
14 16
|
coeq12i |
|- ( ( adjh ` ( projh ` H ) ) o. ( adjh ` ( projh ` G ) ) ) = ( ( projh ` H ) o. ( projh ` G ) ) |
18 |
12 17
|
eqtri |
|- ( adjh ` ( ( projh ` G ) o. ( projh ` H ) ) ) = ( ( projh ` H ) o. ( projh ` G ) ) |
19 |
9 18
|
eqtr3di |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh -> ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) ) |
20 |
8 19
|
impbii |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) <-> ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh ) |