Metamath Proof Explorer


Theorem pjcmul1i

Description: A necessary and sufficient condition for the product of two projectors to be a projector is that the projectors commute. Part 1 of Theorem 1 of AkhiezerGlazman p. 65. (Contributed by NM, 3-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion pjcmul1i ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ↔ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∈ ran proj )

Proof

Step Hyp Ref Expression
1 pjclem1.1 𝐺C
2 pjclem1.2 𝐻C
3 1 2 pjclem4 ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( 𝐺𝐻 ) ) )
4 pjmfn proj Fn C
5 1 2 chincli ( 𝐺𝐻 ) ∈ C
6 fnfvelrn ( ( proj Fn C ∧ ( 𝐺𝐻 ) ∈ C ) → ( proj ‘ ( 𝐺𝐻 ) ) ∈ ran proj )
7 4 5 6 mp2an ( proj ‘ ( 𝐺𝐻 ) ) ∈ ran proj
8 3 7 eqeltrdi ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∈ ran proj )
9 pjadj2 ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∈ ran proj → ( adj ‘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) )
10 1 pjbdlni ( proj𝐺 ) ∈ BndLinOp
11 2 pjbdlni ( proj𝐻 ) ∈ BndLinOp
12 10 11 adjcoi ( adj ‘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ) = ( ( adj ‘ ( proj𝐻 ) ) ∘ ( adj ‘ ( proj𝐺 ) ) )
13 pjadj3 ( 𝐻C → ( adj ‘ ( proj𝐻 ) ) = ( proj𝐻 ) )
14 2 13 ax-mp ( adj ‘ ( proj𝐻 ) ) = ( proj𝐻 )
15 pjadj3 ( 𝐺C → ( adj ‘ ( proj𝐺 ) ) = ( proj𝐺 ) )
16 1 15 ax-mp ( adj ‘ ( proj𝐺 ) ) = ( proj𝐺 )
17 14 16 coeq12i ( ( adj ‘ ( proj𝐻 ) ) ∘ ( adj ‘ ( proj𝐺 ) ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) )
18 12 17 eqtri ( adj ‘ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) )
19 9 18 eqtr3di ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∈ ran proj → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )
20 8 19 impbii ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ↔ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∈ ran proj )