| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjclem1.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjclem1.2 |
⊢ 𝐻 ∈ Cℋ |
| 3 |
1 2
|
pjclem4 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
| 4 |
|
pjmfn |
⊢ projℎ Fn Cℋ |
| 5 |
1 2
|
chincli |
⊢ ( 𝐺 ∩ 𝐻 ) ∈ Cℋ |
| 6 |
|
fnfvelrn |
⊢ ( ( projℎ Fn Cℋ ∧ ( 𝐺 ∩ 𝐻 ) ∈ Cℋ ) → ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ∈ ran projℎ ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ∈ ran projℎ |
| 8 |
3 7
|
eqeltrdi |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∈ ran projℎ ) |
| 9 |
|
pjadj2 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∈ ran projℎ → ( adjℎ ‘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 10 |
1
|
pjbdlni |
⊢ ( projℎ ‘ 𝐺 ) ∈ BndLinOp |
| 11 |
2
|
pjbdlni |
⊢ ( projℎ ‘ 𝐻 ) ∈ BndLinOp |
| 12 |
10 11
|
adjcoi |
⊢ ( adjℎ ‘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) = ( ( adjℎ ‘ ( projℎ ‘ 𝐻 ) ) ∘ ( adjℎ ‘ ( projℎ ‘ 𝐺 ) ) ) |
| 13 |
|
pjadj3 |
⊢ ( 𝐻 ∈ Cℋ → ( adjℎ ‘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐻 ) ) |
| 14 |
2 13
|
ax-mp |
⊢ ( adjℎ ‘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐻 ) |
| 15 |
|
pjadj3 |
⊢ ( 𝐺 ∈ Cℋ → ( adjℎ ‘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) ) |
| 16 |
1 15
|
ax-mp |
⊢ ( adjℎ ‘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) |
| 17 |
14 16
|
coeq12i |
⊢ ( ( adjℎ ‘ ( projℎ ‘ 𝐻 ) ) ∘ ( adjℎ ‘ ( projℎ ‘ 𝐺 ) ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) |
| 18 |
12 17
|
eqtri |
⊢ ( adjℎ ‘ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) |
| 19 |
9 18
|
eqtr3di |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∈ ran projℎ → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
| 20 |
8 19
|
impbii |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∈ ran projℎ ) |