Metamath Proof Explorer


Theorem pjadj3

Description: A projector is self-adjoint. Property (i) of Beran p. 109. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion pjadj3 ( 𝐻C → ( adj ‘ ( proj𝐻 ) ) = ( proj𝐻 ) )

Proof

Step Hyp Ref Expression
1 pjmfn proj Fn C
2 fnfvelrn ( ( proj Fn C𝐻C ) → ( proj𝐻 ) ∈ ran proj )
3 1 2 mpan ( 𝐻C → ( proj𝐻 ) ∈ ran proj )
4 pjadj2 ( ( proj𝐻 ) ∈ ran proj → ( adj ‘ ( proj𝐻 ) ) = ( proj𝐻 ) )
5 3 4 syl ( 𝐻C → ( adj ‘ ( proj𝐻 ) ) = ( proj𝐻 ) )