Metamath Proof Explorer


Theorem pjadj3

Description: A projector is self-adjoint. Property (i) of Beran p. 109. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion pjadj3
|- ( H e. CH -> ( adjh ` ( projh ` H ) ) = ( projh ` H ) )

Proof

Step Hyp Ref Expression
1 pjmfn
 |-  projh Fn CH
2 fnfvelrn
 |-  ( ( projh Fn CH /\ H e. CH ) -> ( projh ` H ) e. ran projh )
3 1 2 mpan
 |-  ( H e. CH -> ( projh ` H ) e. ran projh )
4 pjadj2
 |-  ( ( projh ` H ) e. ran projh -> ( adjh ` ( projh ` H ) ) = ( projh ` H ) )
5 3 4 syl
 |-  ( H e. CH -> ( adjh ` ( projh ` H ) ) = ( projh ` H ) )