Metamath Proof Explorer


Theorem elpjch

Description: Reconstruction of the subspace of a projection operator. Part of Theorem 26.2 of Halmos p. 44. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion elpjch
|- ( T e. ran projh -> ( ran T e. CH /\ T = ( projh ` ran T ) ) )

Proof

Step Hyp Ref Expression
1 dfpjop
 |-  ( T e. ran projh <-> ( T e. HrmOp /\ ( T o. T ) = T ) )
2 hmopidmch
 |-  ( ( T e. HrmOp /\ ( T o. T ) = T ) -> ran T e. CH )
3 hmopidmpj
 |-  ( ( T e. HrmOp /\ ( T o. T ) = T ) -> T = ( projh ` ran T ) )
4 2 3 jca
 |-  ( ( T e. HrmOp /\ ( T o. T ) = T ) -> ( ran T e. CH /\ T = ( projh ` ran T ) ) )
5 1 4 sylbi
 |-  ( T e. ran projh -> ( ran T e. CH /\ T = ( projh ` ran T ) ) )