Step |
Hyp |
Ref |
Expression |
1 |
|
elpjch |
|- ( T e. ran projh -> ( ran T e. CH /\ T = ( projh ` ran T ) ) ) |
2 |
1
|
simpld |
|- ( T e. ran projh -> ran T e. CH ) |
3 |
|
chss |
|- ( ran T e. CH -> ran T C_ ~H ) |
4 |
2 3
|
syl |
|- ( T e. ran projh -> ran T C_ ~H ) |
5 |
4
|
sseld |
|- ( T e. ran projh -> ( x e. ran T -> x e. ~H ) ) |
6 |
|
elpjhmop |
|- ( T e. ran projh -> T e. HrmOp ) |
7 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
8 |
6 7
|
syl |
|- ( T e. ran projh -> T : ~H --> ~H ) |
9 |
8
|
ffnd |
|- ( T e. ran projh -> T Fn ~H ) |
10 |
|
fvelrnb |
|- ( T Fn ~H -> ( x e. ran T <-> E. y e. ~H ( T ` y ) = x ) ) |
11 |
9 10
|
syl |
|- ( T e. ran projh -> ( x e. ran T <-> E. y e. ~H ( T ` y ) = x ) ) |
12 |
|
fvco3 |
|- ( ( T : ~H --> ~H /\ y e. ~H ) -> ( ( T o. T ) ` y ) = ( T ` ( T ` y ) ) ) |
13 |
8 12
|
sylan |
|- ( ( T e. ran projh /\ y e. ~H ) -> ( ( T o. T ) ` y ) = ( T ` ( T ` y ) ) ) |
14 |
|
elpjidm |
|- ( T e. ran projh -> ( T o. T ) = T ) |
15 |
14
|
adantr |
|- ( ( T e. ran projh /\ y e. ~H ) -> ( T o. T ) = T ) |
16 |
15
|
fveq1d |
|- ( ( T e. ran projh /\ y e. ~H ) -> ( ( T o. T ) ` y ) = ( T ` y ) ) |
17 |
13 16
|
eqtr3d |
|- ( ( T e. ran projh /\ y e. ~H ) -> ( T ` ( T ` y ) ) = ( T ` y ) ) |
18 |
|
fveq2 |
|- ( ( T ` y ) = x -> ( T ` ( T ` y ) ) = ( T ` x ) ) |
19 |
|
id |
|- ( ( T ` y ) = x -> ( T ` y ) = x ) |
20 |
18 19
|
eqeq12d |
|- ( ( T ` y ) = x -> ( ( T ` ( T ` y ) ) = ( T ` y ) <-> ( T ` x ) = x ) ) |
21 |
17 20
|
syl5ibcom |
|- ( ( T e. ran projh /\ y e. ~H ) -> ( ( T ` y ) = x -> ( T ` x ) = x ) ) |
22 |
21
|
rexlimdva |
|- ( T e. ran projh -> ( E. y e. ~H ( T ` y ) = x -> ( T ` x ) = x ) ) |
23 |
11 22
|
sylbid |
|- ( T e. ran projh -> ( x e. ran T -> ( T ` x ) = x ) ) |
24 |
5 23
|
jcad |
|- ( T e. ran projh -> ( x e. ran T -> ( x e. ~H /\ ( T ` x ) = x ) ) ) |
25 |
|
fnfvelrn |
|- ( ( T Fn ~H /\ x e. ~H ) -> ( T ` x ) e. ran T ) |
26 |
9 25
|
sylan |
|- ( ( T e. ran projh /\ x e. ~H ) -> ( T ` x ) e. ran T ) |
27 |
|
eleq1 |
|- ( ( T ` x ) = x -> ( ( T ` x ) e. ran T <-> x e. ran T ) ) |
28 |
26 27
|
syl5ibcom |
|- ( ( T e. ran projh /\ x e. ~H ) -> ( ( T ` x ) = x -> x e. ran T ) ) |
29 |
28
|
expimpd |
|- ( T e. ran projh -> ( ( x e. ~H /\ ( T ` x ) = x ) -> x e. ran T ) ) |
30 |
24 29
|
impbid |
|- ( T e. ran projh -> ( x e. ran T <-> ( x e. ~H /\ ( T ` x ) = x ) ) ) |
31 |
30
|
abbi2dv |
|- ( T e. ran projh -> ran T = { x | ( x e. ~H /\ ( T ` x ) = x ) } ) |
32 |
|
df-rab |
|- { x e. ~H | ( T ` x ) = x } = { x | ( x e. ~H /\ ( T ` x ) = x ) } |
33 |
31 32
|
eqtr4di |
|- ( T e. ran projh -> ran T = { x e. ~H | ( T ` x ) = x } ) |