Step |
Hyp |
Ref |
Expression |
1 |
|
elpjch |
⊢ ( 𝑇 ∈ ran projℎ → ( ran 𝑇 ∈ Cℋ ∧ 𝑇 = ( projℎ ‘ ran 𝑇 ) ) ) |
2 |
1
|
simpld |
⊢ ( 𝑇 ∈ ran projℎ → ran 𝑇 ∈ Cℋ ) |
3 |
|
chss |
⊢ ( ran 𝑇 ∈ Cℋ → ran 𝑇 ⊆ ℋ ) |
4 |
2 3
|
syl |
⊢ ( 𝑇 ∈ ran projℎ → ran 𝑇 ⊆ ℋ ) |
5 |
4
|
sseld |
⊢ ( 𝑇 ∈ ran projℎ → ( 𝑥 ∈ ran 𝑇 → 𝑥 ∈ ℋ ) ) |
6 |
|
elpjhmop |
⊢ ( 𝑇 ∈ ran projℎ → 𝑇 ∈ HrmOp ) |
7 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
8 |
6 7
|
syl |
⊢ ( 𝑇 ∈ ran projℎ → 𝑇 : ℋ ⟶ ℋ ) |
9 |
8
|
ffnd |
⊢ ( 𝑇 ∈ ran projℎ → 𝑇 Fn ℋ ) |
10 |
|
fvelrnb |
⊢ ( 𝑇 Fn ℋ → ( 𝑥 ∈ ran 𝑇 ↔ ∃ 𝑦 ∈ ℋ ( 𝑇 ‘ 𝑦 ) = 𝑥 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑇 ∈ ran projℎ → ( 𝑥 ∈ ran 𝑇 ↔ ∃ 𝑦 ∈ ℋ ( 𝑇 ‘ 𝑦 ) = 𝑥 ) ) |
12 |
|
fvco3 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
13 |
8 12
|
sylan |
⊢ ( ( 𝑇 ∈ ran projℎ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
14 |
|
elpjidm |
⊢ ( 𝑇 ∈ ran projℎ → ( 𝑇 ∘ 𝑇 ) = 𝑇 ) |
15 |
14
|
adantr |
⊢ ( ( 𝑇 ∈ ran projℎ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ∘ 𝑇 ) = 𝑇 ) |
16 |
15
|
fveq1d |
⊢ ( ( 𝑇 ∈ ran projℎ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) |
17 |
13 16
|
eqtr3d |
⊢ ( ( 𝑇 ∈ ran projℎ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑇 ‘ 𝑦 ) ) |
18 |
|
fveq2 |
⊢ ( ( 𝑇 ‘ 𝑦 ) = 𝑥 → ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑇 ‘ 𝑥 ) ) |
19 |
|
id |
⊢ ( ( 𝑇 ‘ 𝑦 ) = 𝑥 → ( 𝑇 ‘ 𝑦 ) = 𝑥 ) |
20 |
18 19
|
eqeq12d |
⊢ ( ( 𝑇 ‘ 𝑦 ) = 𝑥 → ( ( 𝑇 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑇 ‘ 𝑦 ) ↔ ( 𝑇 ‘ 𝑥 ) = 𝑥 ) ) |
21 |
17 20
|
syl5ibcom |
⊢ ( ( 𝑇 ∈ ran projℎ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) = 𝑥 → ( 𝑇 ‘ 𝑥 ) = 𝑥 ) ) |
22 |
21
|
rexlimdva |
⊢ ( 𝑇 ∈ ran projℎ → ( ∃ 𝑦 ∈ ℋ ( 𝑇 ‘ 𝑦 ) = 𝑥 → ( 𝑇 ‘ 𝑥 ) = 𝑥 ) ) |
23 |
11 22
|
sylbid |
⊢ ( 𝑇 ∈ ran projℎ → ( 𝑥 ∈ ran 𝑇 → ( 𝑇 ‘ 𝑥 ) = 𝑥 ) ) |
24 |
5 23
|
jcad |
⊢ ( 𝑇 ∈ ran projℎ → ( 𝑥 ∈ ran 𝑇 → ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 𝑥 ) ) ) |
25 |
|
fnfvelrn |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ran 𝑇 ) |
26 |
9 25
|
sylan |
⊢ ( ( 𝑇 ∈ ran projℎ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ran 𝑇 ) |
27 |
|
eleq1 |
⊢ ( ( 𝑇 ‘ 𝑥 ) = 𝑥 → ( ( 𝑇 ‘ 𝑥 ) ∈ ran 𝑇 ↔ 𝑥 ∈ ran 𝑇 ) ) |
28 |
26 27
|
syl5ibcom |
⊢ ( ( 𝑇 ∈ ran projℎ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) = 𝑥 → 𝑥 ∈ ran 𝑇 ) ) |
29 |
28
|
expimpd |
⊢ ( 𝑇 ∈ ran projℎ → ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 𝑥 ) → 𝑥 ∈ ran 𝑇 ) ) |
30 |
24 29
|
impbid |
⊢ ( 𝑇 ∈ ran projℎ → ( 𝑥 ∈ ran 𝑇 ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 𝑥 ) ) ) |
31 |
30
|
abbi2dv |
⊢ ( 𝑇 ∈ ran projℎ → ran 𝑇 = { 𝑥 ∣ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 𝑥 ) } ) |
32 |
|
df-rab |
⊢ { 𝑥 ∈ ℋ ∣ ( 𝑇 ‘ 𝑥 ) = 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 𝑥 ) } |
33 |
31 32
|
eqtr4di |
⊢ ( 𝑇 ∈ ran projℎ → ran 𝑇 = { 𝑥 ∈ ℋ ∣ ( 𝑇 ‘ 𝑥 ) = 𝑥 } ) |