Metamath Proof Explorer


Theorem elpjrn

Description: Reconstruction of the subspace of a projection operator. (Contributed by NM, 24-Apr-2006) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Assertion elpjrn ( 𝑇 ∈ ran proj → ran 𝑇 = { 𝑥 ∈ ℋ ∣ ( 𝑇𝑥 ) = 𝑥 } )

Proof

Step Hyp Ref Expression
1 elpjch ( 𝑇 ∈ ran proj → ( ran 𝑇C𝑇 = ( proj ‘ ran 𝑇 ) ) )
2 1 simpld ( 𝑇 ∈ ran proj → ran 𝑇C )
3 chss ( ran 𝑇C → ran 𝑇 ⊆ ℋ )
4 2 3 syl ( 𝑇 ∈ ran proj → ran 𝑇 ⊆ ℋ )
5 4 sseld ( 𝑇 ∈ ran proj → ( 𝑥 ∈ ran 𝑇𝑥 ∈ ℋ ) )
6 elpjhmop ( 𝑇 ∈ ran proj𝑇 ∈ HrmOp )
7 hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )
8 6 7 syl ( 𝑇 ∈ ran proj𝑇 : ℋ ⟶ ℋ )
9 8 ffnd ( 𝑇 ∈ ran proj𝑇 Fn ℋ )
10 fvelrnb ( 𝑇 Fn ℋ → ( 𝑥 ∈ ran 𝑇 ↔ ∃ 𝑦 ∈ ℋ ( 𝑇𝑦 ) = 𝑥 ) )
11 9 10 syl ( 𝑇 ∈ ran proj → ( 𝑥 ∈ ran 𝑇 ↔ ∃ 𝑦 ∈ ℋ ( 𝑇𝑦 ) = 𝑥 ) )
12 fvco3 ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑇 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑇𝑦 ) ) )
13 8 12 sylan ( ( 𝑇 ∈ ran proj𝑦 ∈ ℋ ) → ( ( 𝑇𝑇 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑇𝑦 ) ) )
14 elpjidm ( 𝑇 ∈ ran proj → ( 𝑇𝑇 ) = 𝑇 )
15 14 adantr ( ( 𝑇 ∈ ran proj𝑦 ∈ ℋ ) → ( 𝑇𝑇 ) = 𝑇 )
16 15 fveq1d ( ( 𝑇 ∈ ran proj𝑦 ∈ ℋ ) → ( ( 𝑇𝑇 ) ‘ 𝑦 ) = ( 𝑇𝑦 ) )
17 13 16 eqtr3d ( ( 𝑇 ∈ ran proj𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑇𝑦 ) ) = ( 𝑇𝑦 ) )
18 fveq2 ( ( 𝑇𝑦 ) = 𝑥 → ( 𝑇 ‘ ( 𝑇𝑦 ) ) = ( 𝑇𝑥 ) )
19 id ( ( 𝑇𝑦 ) = 𝑥 → ( 𝑇𝑦 ) = 𝑥 )
20 18 19 eqeq12d ( ( 𝑇𝑦 ) = 𝑥 → ( ( 𝑇 ‘ ( 𝑇𝑦 ) ) = ( 𝑇𝑦 ) ↔ ( 𝑇𝑥 ) = 𝑥 ) )
21 17 20 syl5ibcom ( ( 𝑇 ∈ ran proj𝑦 ∈ ℋ ) → ( ( 𝑇𝑦 ) = 𝑥 → ( 𝑇𝑥 ) = 𝑥 ) )
22 21 rexlimdva ( 𝑇 ∈ ran proj → ( ∃ 𝑦 ∈ ℋ ( 𝑇𝑦 ) = 𝑥 → ( 𝑇𝑥 ) = 𝑥 ) )
23 11 22 sylbid ( 𝑇 ∈ ran proj → ( 𝑥 ∈ ran 𝑇 → ( 𝑇𝑥 ) = 𝑥 ) )
24 5 23 jcad ( 𝑇 ∈ ran proj → ( 𝑥 ∈ ran 𝑇 → ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) = 𝑥 ) ) )
25 fnfvelrn ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇𝑥 ) ∈ ran 𝑇 )
26 9 25 sylan ( ( 𝑇 ∈ ran proj𝑥 ∈ ℋ ) → ( 𝑇𝑥 ) ∈ ran 𝑇 )
27 eleq1 ( ( 𝑇𝑥 ) = 𝑥 → ( ( 𝑇𝑥 ) ∈ ran 𝑇𝑥 ∈ ran 𝑇 ) )
28 26 27 syl5ibcom ( ( 𝑇 ∈ ran proj𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) = 𝑥𝑥 ∈ ran 𝑇 ) )
29 28 expimpd ( 𝑇 ∈ ran proj → ( ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) = 𝑥 ) → 𝑥 ∈ ran 𝑇 ) )
30 24 29 impbid ( 𝑇 ∈ ran proj → ( 𝑥 ∈ ran 𝑇 ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) = 𝑥 ) ) )
31 30 abbi2dv ( 𝑇 ∈ ran proj → ran 𝑇 = { 𝑥 ∣ ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) = 𝑥 ) } )
32 df-rab { 𝑥 ∈ ℋ ∣ ( 𝑇𝑥 ) = 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ℋ ∧ ( 𝑇𝑥 ) = 𝑥 ) }
33 31 32 eqtr4di ( 𝑇 ∈ ran proj → ran 𝑇 = { 𝑥 ∈ ℋ ∣ ( 𝑇𝑥 ) = 𝑥 } )