Metamath Proof Explorer


Theorem pjinvari

Description: A closed subspace H with projection T is invariant under an operator S iff S T = T S T . Theorem 27.1 of Halmos p. 45. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjinvar.1 𝑆 : ℋ ⟶ ℋ
pjinvar.2 𝐻C
pjinvar.3 𝑇 = ( proj𝐻 )
Assertion pjinvari ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻 ↔ ( 𝑆𝑇 ) = ( 𝑇 ∘ ( 𝑆𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 pjinvar.1 𝑆 : ℋ ⟶ ℋ
2 pjinvar.2 𝐻C
3 pjinvar.3 𝑇 = ( proj𝐻 )
4 3 fveq1i ( 𝑇 ‘ ( ( 𝑆𝑇 ) ‘ 𝑥 ) ) = ( ( proj𝐻 ) ‘ ( ( 𝑆𝑇 ) ‘ 𝑥 ) )
5 ffvelrn ( ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻𝑥 ∈ ℋ ) → ( ( 𝑆𝑇 ) ‘ 𝑥 ) ∈ 𝐻 )
6 pjid ( ( 𝐻C ∧ ( ( 𝑆𝑇 ) ‘ 𝑥 ) ∈ 𝐻 ) → ( ( proj𝐻 ) ‘ ( ( 𝑆𝑇 ) ‘ 𝑥 ) ) = ( ( 𝑆𝑇 ) ‘ 𝑥 ) )
7 2 5 6 sylancr ( ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻𝑥 ∈ ℋ ) → ( ( proj𝐻 ) ‘ ( ( 𝑆𝑇 ) ‘ 𝑥 ) ) = ( ( 𝑆𝑇 ) ‘ 𝑥 ) )
8 4 7 eqtr2id ( ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻𝑥 ∈ ℋ ) → ( ( 𝑆𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( 𝑆𝑇 ) ‘ 𝑥 ) ) )
9 fvco3 ( ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ ( 𝑆𝑇 ) ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( 𝑆𝑇 ) ‘ 𝑥 ) ) )
10 8 9 eqtr4d ( ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻𝑥 ∈ ℋ ) → ( ( 𝑆𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 ∘ ( 𝑆𝑇 ) ) ‘ 𝑥 ) )
11 10 ralrimiva ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻 → ∀ 𝑥 ∈ ℋ ( ( 𝑆𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 ∘ ( 𝑆𝑇 ) ) ‘ 𝑥 ) )
12 2 pjfoi ( proj𝐻 ) : ℋ –onto𝐻
13 fof ( ( proj𝐻 ) : ℋ –onto𝐻 → ( proj𝐻 ) : ℋ ⟶ 𝐻 )
14 12 13 ax-mp ( proj𝐻 ) : ℋ ⟶ 𝐻
15 3 feq1i ( 𝑇 : ℋ ⟶ 𝐻 ↔ ( proj𝐻 ) : ℋ ⟶ 𝐻 )
16 14 15 mpbir 𝑇 : ℋ ⟶ 𝐻
17 2 chssii 𝐻 ⊆ ℋ
18 fss ( ( 𝑇 : ℋ ⟶ 𝐻𝐻 ⊆ ℋ ) → 𝑇 : ℋ ⟶ ℋ )
19 16 17 18 mp2an 𝑇 : ℋ ⟶ ℋ
20 1 19 hocofni ( 𝑆𝑇 ) Fn ℋ
21 1 19 hocofi ( 𝑆𝑇 ) : ℋ ⟶ ℋ
22 19 21 hocofni ( 𝑇 ∘ ( 𝑆𝑇 ) ) Fn ℋ
23 eqfnfv ( ( ( 𝑆𝑇 ) Fn ℋ ∧ ( 𝑇 ∘ ( 𝑆𝑇 ) ) Fn ℋ ) → ( ( 𝑆𝑇 ) = ( 𝑇 ∘ ( 𝑆𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 ∘ ( 𝑆𝑇 ) ) ‘ 𝑥 ) ) )
24 20 22 23 mp2an ( ( 𝑆𝑇 ) = ( 𝑇 ∘ ( 𝑆𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 ∘ ( 𝑆𝑇 ) ) ‘ 𝑥 ) )
25 11 24 sylibr ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻 → ( 𝑆𝑇 ) = ( 𝑇 ∘ ( 𝑆𝑇 ) ) )
26 fco ( ( 𝑇 : ℋ ⟶ 𝐻 ∧ ( 𝑆𝑇 ) : ℋ ⟶ ℋ ) → ( 𝑇 ∘ ( 𝑆𝑇 ) ) : ℋ ⟶ 𝐻 )
27 16 21 26 mp2an ( 𝑇 ∘ ( 𝑆𝑇 ) ) : ℋ ⟶ 𝐻
28 feq1 ( ( 𝑆𝑇 ) = ( 𝑇 ∘ ( 𝑆𝑇 ) ) → ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻 ↔ ( 𝑇 ∘ ( 𝑆𝑇 ) ) : ℋ ⟶ 𝐻 ) )
29 27 28 mpbiri ( ( 𝑆𝑇 ) = ( 𝑇 ∘ ( 𝑆𝑇 ) ) → ( 𝑆𝑇 ) : ℋ ⟶ 𝐻 )
30 25 29 impbii ( ( 𝑆𝑇 ) : ℋ ⟶ 𝐻 ↔ ( 𝑆𝑇 ) = ( 𝑇 ∘ ( 𝑆𝑇 ) ) )