Step |
Hyp |
Ref |
Expression |
1 |
|
pjinvar.1 |
⊢ 𝑆 : ℋ ⟶ ℋ |
2 |
|
pjinvar.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
|
pjinvar.3 |
⊢ 𝑇 = ( projℎ ‘ 𝐻 ) |
4 |
3
|
fveq1i |
⊢ ( 𝑇 ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) |
5 |
|
ffvelrn |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ∈ 𝐻 ) |
6 |
|
pjid |
⊢ ( ( 𝐻 ∈ Cℋ ∧ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) |
7 |
2 5 6
|
sylancr |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) |
8 |
4 7
|
eqtr2id |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
9 |
|
fvco3 |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑥 ) = ( 𝑇 ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
10 |
8 9
|
eqtr4d |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑥 ) ) |
11 |
10
|
ralrimiva |
⊢ ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 → ∀ 𝑥 ∈ ℋ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑥 ) ) |
12 |
2
|
pjfoi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 |
13 |
|
fof |
⊢ ( ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 → ( projℎ ‘ 𝐻 ) : ℋ ⟶ 𝐻 ) |
14 |
12 13
|
ax-mp |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ 𝐻 |
15 |
3
|
feq1i |
⊢ ( 𝑇 : ℋ ⟶ 𝐻 ↔ ( projℎ ‘ 𝐻 ) : ℋ ⟶ 𝐻 ) |
16 |
14 15
|
mpbir |
⊢ 𝑇 : ℋ ⟶ 𝐻 |
17 |
2
|
chssii |
⊢ 𝐻 ⊆ ℋ |
18 |
|
fss |
⊢ ( ( 𝑇 : ℋ ⟶ 𝐻 ∧ 𝐻 ⊆ ℋ ) → 𝑇 : ℋ ⟶ ℋ ) |
19 |
16 17 18
|
mp2an |
⊢ 𝑇 : ℋ ⟶ ℋ |
20 |
1 19
|
hocofni |
⊢ ( 𝑆 ∘ 𝑇 ) Fn ℋ |
21 |
1 19
|
hocofi |
⊢ ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ |
22 |
19 21
|
hocofni |
⊢ ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) Fn ℋ |
23 |
|
eqfnfv |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) Fn ℋ ∧ ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) Fn ℋ ) → ( ( 𝑆 ∘ 𝑇 ) = ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑥 ) ) ) |
24 |
20 22 23
|
mp2an |
⊢ ( ( 𝑆 ∘ 𝑇 ) = ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑥 ) ) |
25 |
11 24
|
sylibr |
⊢ ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 → ( 𝑆 ∘ 𝑇 ) = ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) ) |
26 |
|
fco |
⊢ ( ( 𝑇 : ℋ ⟶ 𝐻 ∧ ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ ) → ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ 𝐻 ) |
27 |
16 21 26
|
mp2an |
⊢ ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ 𝐻 |
28 |
|
feq1 |
⊢ ( ( 𝑆 ∘ 𝑇 ) = ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) → ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 ↔ ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ 𝐻 ) ) |
29 |
27 28
|
mpbiri |
⊢ ( ( 𝑆 ∘ 𝑇 ) = ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) → ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 ) |
30 |
25 29
|
impbii |
⊢ ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ 𝐻 ↔ ( 𝑆 ∘ 𝑇 ) = ( 𝑇 ∘ ( 𝑆 ∘ 𝑇 ) ) ) |