Metamath Proof Explorer


Theorem pjin1i

Description: Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjin1.1 𝐺C
pjin1.2 𝐻C
Assertion pjin1i ( proj ‘ ( 𝐺𝐻 ) ) = ( ( proj𝐺 ) ∘ ( proj ‘ ( 𝐺𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 pjin1.1 𝐺C
2 pjin1.2 𝐻C
3 inss1 ( 𝐺𝐻 ) ⊆ 𝐺
4 1 2 chincli ( 𝐺𝐻 ) ∈ C
5 4 1 pjss1coi ( ( 𝐺𝐻 ) ⊆ 𝐺 ↔ ( ( proj𝐺 ) ∘ ( proj ‘ ( 𝐺𝐻 ) ) ) = ( proj ‘ ( 𝐺𝐻 ) ) )
6 3 5 mpbi ( ( proj𝐺 ) ∘ ( proj ‘ ( 𝐺𝐻 ) ) ) = ( proj ‘ ( 𝐺𝐻 ) )
7 6 eqcomi ( proj ‘ ( 𝐺𝐻 ) ) = ( ( proj𝐺 ) ∘ ( proj ‘ ( 𝐺𝐻 ) ) )