Metamath Proof Explorer


Theorem pjin2i

Description: Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjin1.1 𝐺C
pjin1.2 𝐻C
Assertion pjin2i ( ( ( proj𝐺 ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∧ ( proj𝐻 ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ) ↔ ( proj𝐺 ) = ( proj𝐻 ) )

Proof

Step Hyp Ref Expression
1 pjin1.1 𝐺C
2 pjin1.2 𝐻C
3 eqss ( 𝐺 = 𝐻 ↔ ( 𝐺𝐻𝐻𝐺 ) )
4 1 2 pjss2coi ( 𝐺𝐻 ↔ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj𝐺 ) )
5 eqcom ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj𝐺 ) ↔ ( proj𝐺 ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) )
6 4 5 bitri ( 𝐺𝐻 ↔ ( proj𝐺 ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) )
7 2 1 pjss2coi ( 𝐻𝐺 ↔ ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) = ( proj𝐻 ) )
8 eqcom ( ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) = ( proj𝐻 ) ↔ ( proj𝐻 ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )
9 7 8 bitri ( 𝐻𝐺 ↔ ( proj𝐻 ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )
10 6 9 anbi12i ( ( 𝐺𝐻𝐻𝐺 ) ↔ ( ( proj𝐺 ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∧ ( proj𝐻 ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ) )
11 3 10 bitr2i ( ( ( proj𝐺 ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∧ ( proj𝐻 ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ) ↔ 𝐺 = 𝐻 )
12 fveq2 ( 𝐺 = 𝐻 → ( proj𝐺 ) = ( proj𝐻 ) )
13 11 12 sylbi ( ( ( proj𝐺 ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∧ ( proj𝐻 ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ) → ( proj𝐺 ) = ( proj𝐻 ) )
14 1 pjidmcoi ( ( proj𝐺 ) ∘ ( proj𝐺 ) ) = ( proj𝐺 )
15 coeq2 ( ( proj𝐺 ) = ( proj𝐻 ) → ( ( proj𝐺 ) ∘ ( proj𝐺 ) ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) )
16 14 15 eqtr3id ( ( proj𝐺 ) = ( proj𝐻 ) → ( proj𝐺 ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) )
17 coeq2 ( ( proj𝐺 ) = ( proj𝐻 ) → ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐻 ) ) )
18 2 pjidmcoi ( ( proj𝐻 ) ∘ ( proj𝐻 ) ) = ( proj𝐻 )
19 17 18 eqtr2di ( ( proj𝐺 ) = ( proj𝐻 ) → ( proj𝐻 ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )
20 16 19 jca ( ( proj𝐺 ) = ( proj𝐻 ) → ( ( proj𝐺 ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∧ ( proj𝐻 ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ) )
21 13 20 impbii ( ( ( proj𝐺 ) = ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∧ ( proj𝐻 ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ) ↔ ( proj𝐺 ) = ( proj𝐻 ) )