| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjin1.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjin1.2 |
⊢ 𝐻 ∈ Cℋ |
| 3 |
|
eqss |
⊢ ( 𝐺 = 𝐻 ↔ ( 𝐺 ⊆ 𝐻 ∧ 𝐻 ⊆ 𝐺 ) ) |
| 4 |
1 2
|
pjss2coi |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ) |
| 5 |
|
eqcom |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ↔ ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 6 |
4 5
|
bitri |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 7 |
2 1
|
pjss2coi |
⊢ ( 𝐻 ⊆ 𝐺 ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐻 ) ) |
| 8 |
|
eqcom |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐻 ) ↔ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
| 9 |
7 8
|
bitri |
⊢ ( 𝐻 ⊆ 𝐺 ↔ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
| 10 |
6 9
|
anbi12i |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝐻 ⊆ 𝐺 ) ↔ ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ) |
| 11 |
3 10
|
bitr2i |
⊢ ( ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ↔ 𝐺 = 𝐻 ) |
| 12 |
|
fveq2 |
⊢ ( 𝐺 = 𝐻 → ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ) |
| 13 |
11 12
|
sylbi |
⊢ ( ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) → ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ) |
| 14 |
1
|
pjidmcoi |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) |
| 15 |
|
coeq2 |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 16 |
14 15
|
eqtr3id |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 17 |
|
coeq2 |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 18 |
2
|
pjidmcoi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐻 ) |
| 19 |
17 18
|
eqtr2di |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
| 20 |
16 19
|
jca |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ) |
| 21 |
13 20
|
impbii |
⊢ ( ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ↔ ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ) |