Step |
Hyp |
Ref |
Expression |
1 |
|
pjin1.1 |
⊢ 𝐺 ∈ Cℋ |
2 |
|
pjin1.2 |
⊢ 𝐻 ∈ Cℋ |
3 |
|
eqss |
⊢ ( 𝐺 = 𝐻 ↔ ( 𝐺 ⊆ 𝐻 ∧ 𝐻 ⊆ 𝐺 ) ) |
4 |
1 2
|
pjss2coi |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ) |
5 |
|
eqcom |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐺 ) ↔ ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
6 |
4 5
|
bitri |
⊢ ( 𝐺 ⊆ 𝐻 ↔ ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
7 |
2 1
|
pjss2coi |
⊢ ( 𝐻 ⊆ 𝐺 ↔ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐻 ) ) |
8 |
|
eqcom |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐻 ) ↔ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
9 |
7 8
|
bitri |
⊢ ( 𝐻 ⊆ 𝐺 ↔ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
10 |
6 9
|
anbi12i |
⊢ ( ( 𝐺 ⊆ 𝐻 ∧ 𝐻 ⊆ 𝐺 ) ↔ ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ) |
11 |
3 10
|
bitr2i |
⊢ ( ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ↔ 𝐺 = 𝐻 ) |
12 |
|
fveq2 |
⊢ ( 𝐺 = 𝐻 → ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ) |
13 |
11 12
|
sylbi |
⊢ ( ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) → ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ) |
14 |
1
|
pjidmcoi |
⊢ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐺 ) |
15 |
|
coeq2 |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
16 |
14 15
|
eqtr3id |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
17 |
|
coeq2 |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
18 |
2
|
pjidmcoi |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐻 ) |
19 |
17 18
|
eqtr2di |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
20 |
16 19
|
jca |
⊢ ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ) |
21 |
13 20
|
impbii |
⊢ ( ( ( projℎ ‘ 𝐺 ) = ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∧ ( projℎ ‘ 𝐻 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) ↔ ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ) |