| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjin3.1 |
⊢ 𝐹 ∈ Cℋ |
| 2 |
|
pjin3.2 |
⊢ 𝐺 ∈ Cℋ |
| 3 |
|
pjin3.3 |
⊢ 𝐻 ∈ Cℋ |
| 4 |
|
ssin |
⊢ ( ( 𝐹 ⊆ 𝐺 ∧ 𝐹 ⊆ 𝐻 ) ↔ 𝐹 ⊆ ( 𝐺 ∩ 𝐻 ) ) |
| 5 |
1 2
|
pjss2coi |
⊢ ( 𝐹 ⊆ 𝐺 ↔ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐹 ) ) |
| 6 |
|
eqcom |
⊢ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) = ( projℎ ‘ 𝐹 ) ↔ ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
| 7 |
5 6
|
bitri |
⊢ ( 𝐹 ⊆ 𝐺 ↔ ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
| 8 |
1 3
|
pjss2coi |
⊢ ( 𝐹 ⊆ 𝐻 ↔ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐹 ) ) |
| 9 |
|
eqcom |
⊢ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ 𝐹 ) ↔ ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 10 |
8 9
|
bitri |
⊢ ( 𝐹 ⊆ 𝐻 ↔ ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) |
| 11 |
7 10
|
anbi12i |
⊢ ( ( 𝐹 ⊆ 𝐺 ∧ 𝐹 ⊆ 𝐻 ) ↔ ( ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ) |
| 12 |
2 3
|
chincli |
⊢ ( 𝐺 ∩ 𝐻 ) ∈ Cℋ |
| 13 |
1 12
|
pjss2coi |
⊢ ( 𝐹 ⊆ ( 𝐺 ∩ 𝐻 ) ↔ ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) = ( projℎ ‘ 𝐹 ) ) |
| 14 |
|
eqcom |
⊢ ( ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) = ( projℎ ‘ 𝐹 ) ↔ ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) ) |
| 15 |
13 14
|
bitri |
⊢ ( 𝐹 ⊆ ( 𝐺 ∩ 𝐻 ) ↔ ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) ) |
| 16 |
4 11 15
|
3bitr3i |
⊢ ( ( ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐺 ) ) ∧ ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ 𝐻 ) ) ) ↔ ( projℎ ‘ 𝐹 ) = ( ( projℎ ‘ 𝐹 ) ∘ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) ) |