| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjin1.1 |
|- G e. CH |
| 2 |
|
pjin1.2 |
|- H e. CH |
| 3 |
|
eqss |
|- ( G = H <-> ( G C_ H /\ H C_ G ) ) |
| 4 |
1 2
|
pjss2coi |
|- ( G C_ H <-> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) ) |
| 5 |
|
eqcom |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` G ) <-> ( projh ` G ) = ( ( projh ` G ) o. ( projh ` H ) ) ) |
| 6 |
4 5
|
bitri |
|- ( G C_ H <-> ( projh ` G ) = ( ( projh ` G ) o. ( projh ` H ) ) ) |
| 7 |
2 1
|
pjss2coi |
|- ( H C_ G <-> ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` H ) ) |
| 8 |
|
eqcom |
|- ( ( ( projh ` H ) o. ( projh ` G ) ) = ( projh ` H ) <-> ( projh ` H ) = ( ( projh ` H ) o. ( projh ` G ) ) ) |
| 9 |
7 8
|
bitri |
|- ( H C_ G <-> ( projh ` H ) = ( ( projh ` H ) o. ( projh ` G ) ) ) |
| 10 |
6 9
|
anbi12i |
|- ( ( G C_ H /\ H C_ G ) <-> ( ( projh ` G ) = ( ( projh ` G ) o. ( projh ` H ) ) /\ ( projh ` H ) = ( ( projh ` H ) o. ( projh ` G ) ) ) ) |
| 11 |
3 10
|
bitr2i |
|- ( ( ( projh ` G ) = ( ( projh ` G ) o. ( projh ` H ) ) /\ ( projh ` H ) = ( ( projh ` H ) o. ( projh ` G ) ) ) <-> G = H ) |
| 12 |
|
fveq2 |
|- ( G = H -> ( projh ` G ) = ( projh ` H ) ) |
| 13 |
11 12
|
sylbi |
|- ( ( ( projh ` G ) = ( ( projh ` G ) o. ( projh ` H ) ) /\ ( projh ` H ) = ( ( projh ` H ) o. ( projh ` G ) ) ) -> ( projh ` G ) = ( projh ` H ) ) |
| 14 |
1
|
pjidmcoi |
|- ( ( projh ` G ) o. ( projh ` G ) ) = ( projh ` G ) |
| 15 |
|
coeq2 |
|- ( ( projh ` G ) = ( projh ` H ) -> ( ( projh ` G ) o. ( projh ` G ) ) = ( ( projh ` G ) o. ( projh ` H ) ) ) |
| 16 |
14 15
|
eqtr3id |
|- ( ( projh ` G ) = ( projh ` H ) -> ( projh ` G ) = ( ( projh ` G ) o. ( projh ` H ) ) ) |
| 17 |
|
coeq2 |
|- ( ( projh ` G ) = ( projh ` H ) -> ( ( projh ` H ) o. ( projh ` G ) ) = ( ( projh ` H ) o. ( projh ` H ) ) ) |
| 18 |
2
|
pjidmcoi |
|- ( ( projh ` H ) o. ( projh ` H ) ) = ( projh ` H ) |
| 19 |
17 18
|
eqtr2di |
|- ( ( projh ` G ) = ( projh ` H ) -> ( projh ` H ) = ( ( projh ` H ) o. ( projh ` G ) ) ) |
| 20 |
16 19
|
jca |
|- ( ( projh ` G ) = ( projh ` H ) -> ( ( projh ` G ) = ( ( projh ` G ) o. ( projh ` H ) ) /\ ( projh ` H ) = ( ( projh ` H ) o. ( projh ` G ) ) ) ) |
| 21 |
13 20
|
impbii |
|- ( ( ( projh ` G ) = ( ( projh ` G ) o. ( projh ` H ) ) /\ ( projh ` H ) = ( ( projh ` H ) o. ( projh ` G ) ) ) <-> ( projh ` G ) = ( projh ` H ) ) |