Metamath Proof Explorer


Theorem pjin1i

Description: Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjin1.1
|- G e. CH
pjin1.2
|- H e. CH
Assertion pjin1i
|- ( projh ` ( G i^i H ) ) = ( ( projh ` G ) o. ( projh ` ( G i^i H ) ) )

Proof

Step Hyp Ref Expression
1 pjin1.1
 |-  G e. CH
2 pjin1.2
 |-  H e. CH
3 inss1
 |-  ( G i^i H ) C_ G
4 1 2 chincli
 |-  ( G i^i H ) e. CH
5 4 1 pjss1coi
 |-  ( ( G i^i H ) C_ G <-> ( ( projh ` G ) o. ( projh ` ( G i^i H ) ) ) = ( projh ` ( G i^i H ) ) )
6 3 5 mpbi
 |-  ( ( projh ` G ) o. ( projh ` ( G i^i H ) ) ) = ( projh ` ( G i^i H ) )
7 6 eqcomi
 |-  ( projh ` ( G i^i H ) ) = ( ( projh ` G ) o. ( projh ` ( G i^i H ) ) )