| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjclem1.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjclem1.2 |
⊢ 𝐻 ∈ Cℋ |
| 3 |
1 2
|
pjclem4 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
| 4 |
|
pjmfn |
⊢ projℎ Fn Cℋ |
| 5 |
1 2
|
chincli |
⊢ ( 𝐺 ∩ 𝐻 ) ∈ Cℋ |
| 6 |
|
fnfvelrn |
⊢ ( ( projℎ Fn Cℋ ∧ ( 𝐺 ∩ 𝐻 ) ∈ Cℋ ) → ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ∈ ran projℎ ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ∈ ran projℎ |
| 8 |
|
eleq1 |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∈ ran projℎ ↔ ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ∈ ran projℎ ) ) |
| 9 |
7 8
|
mpbiri |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∈ ran projℎ ) |
| 10 |
1 2
|
pjcmul1i |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) ∈ ran projℎ ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ) |
| 12 |
3 11
|
impbii |
⊢ ( ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( projℎ ‘ 𝐺 ) ) ↔ ( ( projℎ ‘ 𝐺 ) ∘ ( projℎ ‘ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |