Metamath Proof Explorer


Theorem pjcmul2i

Description: The projection subspace of the difference between two projectors. Part 2 of Theorem 1 of AkhiezerGlazman p. 65. (Contributed by NM, 3-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion pjcmul2i ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ↔ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( 𝐺𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 pjclem1.1 𝐺C
2 pjclem1.2 𝐻C
3 1 2 pjclem4 ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( 𝐺𝐻 ) ) )
4 pjmfn proj Fn C
5 1 2 chincli ( 𝐺𝐻 ) ∈ C
6 fnfvelrn ( ( proj Fn C ∧ ( 𝐺𝐻 ) ∈ C ) → ( proj ‘ ( 𝐺𝐻 ) ) ∈ ran proj )
7 4 5 6 mp2an ( proj ‘ ( 𝐺𝐻 ) ) ∈ ran proj
8 eleq1 ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( 𝐺𝐻 ) ) → ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∈ ran proj ↔ ( proj ‘ ( 𝐺𝐻 ) ) ∈ ran proj ) )
9 7 8 mpbiri ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( 𝐺𝐻 ) ) → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∈ ran proj )
10 1 2 pjcmul1i ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ↔ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) ∈ ran proj )
11 9 10 sylibr ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( 𝐺𝐻 ) ) → ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) )
12 3 11 impbii ( ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( ( proj𝐻 ) ∘ ( proj𝐺 ) ) ↔ ( ( proj𝐺 ) ∘ ( proj𝐻 ) ) = ( proj ‘ ( 𝐺𝐻 ) ) )