Metamath Proof Explorer


Theorem pjcmul2i

Description: The projection subspace of the difference between two projectors. Part 2 of Theorem 1 of AkhiezerGlazman p. 65. (Contributed by NM, 3-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1
|- G e. CH
pjclem1.2
|- H e. CH
Assertion pjcmul2i
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) <-> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) )

Proof

Step Hyp Ref Expression
1 pjclem1.1
 |-  G e. CH
2 pjclem1.2
 |-  H e. CH
3 1 2 pjclem4
 |-  ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) )
4 pjmfn
 |-  projh Fn CH
5 1 2 chincli
 |-  ( G i^i H ) e. CH
6 fnfvelrn
 |-  ( ( projh Fn CH /\ ( G i^i H ) e. CH ) -> ( projh ` ( G i^i H ) ) e. ran projh )
7 4 5 6 mp2an
 |-  ( projh ` ( G i^i H ) ) e. ran projh
8 eleq1
 |-  ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh <-> ( projh ` ( G i^i H ) ) e. ran projh ) )
9 7 8 mpbiri
 |-  ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) -> ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh )
10 1 2 pjcmul1i
 |-  ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) <-> ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh )
11 9 10 sylibr
 |-  ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) -> ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) )
12 3 11 impbii
 |-  ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) <-> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) )