Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
|- G e. CH |
2 |
|
pjclem1.2 |
|- H e. CH |
3 |
1 2
|
pjclem4 |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) -> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) ) |
4 |
|
pjmfn |
|- projh Fn CH |
5 |
1 2
|
chincli |
|- ( G i^i H ) e. CH |
6 |
|
fnfvelrn |
|- ( ( projh Fn CH /\ ( G i^i H ) e. CH ) -> ( projh ` ( G i^i H ) ) e. ran projh ) |
7 |
4 5 6
|
mp2an |
|- ( projh ` ( G i^i H ) ) e. ran projh |
8 |
|
eleq1 |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh <-> ( projh ` ( G i^i H ) ) e. ran projh ) ) |
9 |
7 8
|
mpbiri |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) -> ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh ) |
10 |
1 2
|
pjcmul1i |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) <-> ( ( projh ` G ) o. ( projh ` H ) ) e. ran projh ) |
11 |
9 10
|
sylibr |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) -> ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) ) |
12 |
3 11
|
impbii |
|- ( ( ( projh ` G ) o. ( projh ` H ) ) = ( ( projh ` H ) o. ( projh ` G ) ) <-> ( ( projh ` G ) o. ( projh ` H ) ) = ( projh ` ( G i^i H ) ) ) |