| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoptri.1 |
⊢ 𝑆 ∈ BndLinOp |
| 2 |
|
nmoptri.2 |
⊢ 𝑇 ∈ BndLinOp |
| 3 |
|
adjbdln |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |
| 4 |
|
bdopf |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
| 5 |
2 3 4
|
mp2b |
⊢ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ |
| 6 |
|
adjbdln |
⊢ ( 𝑆 ∈ BndLinOp → ( adjℎ ‘ 𝑆 ) ∈ BndLinOp ) |
| 7 |
|
bdopf |
⊢ ( ( adjℎ ‘ 𝑆 ) ∈ BndLinOp → ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ ) |
| 8 |
1 6 7
|
mp2b |
⊢ ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ |
| 9 |
5 8
|
hocoi |
⊢ ( 𝑦 ∈ ℋ → ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) = ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 12 |
|
bdopf |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 : ℋ ⟶ ℋ ) |
| 13 |
1 12
|
ax-mp |
⊢ 𝑆 : ℋ ⟶ ℋ |
| 14 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 15 |
2 14
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 16 |
13 15
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
| 19 |
15
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 20 |
|
bdopadj |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 ∈ dom adjℎ ) |
| 21 |
1 20
|
ax-mp |
⊢ 𝑆 ∈ dom adjℎ |
| 22 |
|
adj2 |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 23 |
21 22
|
mp3an1 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 24 |
19 23
|
sylan |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 25 |
8
|
ffvelcdmi |
⊢ ( 𝑦 ∈ ℋ → ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℋ ) |
| 26 |
|
bdopadj |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ ) |
| 27 |
2 26
|
ax-mp |
⊢ 𝑇 ∈ dom adjℎ |
| 28 |
|
adj2 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 29 |
27 28
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 30 |
25 29
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 31 |
18 24 30
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
| 32 |
1 2
|
bdopcoi |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ BndLinOp |
| 33 |
|
bdopadj |
⊢ ( ( 𝑆 ∘ 𝑇 ) ∈ BndLinOp → ( 𝑆 ∘ 𝑇 ) ∈ dom adjℎ ) |
| 34 |
32 33
|
ax-mp |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ dom adjℎ |
| 35 |
|
adj2 |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
| 36 |
34 35
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
| 37 |
11 31 36
|
3eqtr2rd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) ) |
| 38 |
37
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) |
| 39 |
|
adjbdln |
⊢ ( ( 𝑆 ∘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ BndLinOp ) |
| 40 |
|
bdopf |
⊢ ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ∈ BndLinOp → ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 41 |
32 39 40
|
mp2b |
⊢ ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ ℋ |
| 42 |
5 8
|
hocofi |
⊢ ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) : ℋ ⟶ ℋ |
| 43 |
|
hoeq2 |
⊢ ( ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) : ℋ ⟶ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) ↔ ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) = ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ) ) |
| 44 |
41 42 43
|
mp2an |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ‘ 𝑦 ) ) ↔ ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) = ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) ) |
| 45 |
38 44
|
mpbi |
⊢ ( adjℎ ‘ ( 𝑆 ∘ 𝑇 ) ) = ( ( adjℎ ‘ 𝑇 ) ∘ ( adjℎ ‘ 𝑆 ) ) |