| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmopcoadj.1 |
⊢ 𝑇 ∈ BndLinOp |
| 2 |
|
adjbdlnb |
⊢ ( 𝑇 ∈ BndLinOp ↔ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |
| 3 |
1 2
|
mpbi |
⊢ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp |
| 4 |
|
bdopf |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
| 5 |
3 4
|
ax-mp |
⊢ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ |
| 6 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 7 |
1 6
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 8 |
5 7
|
hocofi |
⊢ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) : ℋ ⟶ ℋ |
| 9 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 10 |
1 9
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 11 |
10
|
resqcli |
⊢ ( ( normop ‘ 𝑇 ) ↑ 2 ) ∈ ℝ |
| 12 |
|
rexr |
⊢ ( ( ( normop ‘ 𝑇 ) ↑ 2 ) ∈ ℝ → ( ( normop ‘ 𝑇 ) ↑ 2 ) ∈ ℝ* ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ( normop ‘ 𝑇 ) ↑ 2 ) ∈ ℝ* |
| 14 |
|
nmopub |
⊢ ( ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( normop ‘ 𝑇 ) ↑ 2 ) ∈ ℝ* ) → ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑇 ) ↑ 2 ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) ↑ 2 ) ) ) ) |
| 15 |
8 13 14
|
mp2an |
⊢ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑇 ) ↑ 2 ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) ↑ 2 ) ) ) |
| 16 |
5 7
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) = ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) = ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) = ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 19 |
7
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 20 |
5
|
ffvelcdmi |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 21 |
|
normcl |
⊢ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 22 |
19 20 21
|
3syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 24 |
|
nmopre |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ∈ ℝ ) |
| 25 |
3 24
|
ax-mp |
⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ∈ ℝ |
| 26 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 27 |
19 26
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 28 |
|
remulcl |
⊢ ( ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ∈ ℝ ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 29 |
25 27 28
|
sylancr |
⊢ ( 𝑥 ∈ ℋ → ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 31 |
25 10
|
remulcli |
⊢ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ∈ ℝ |
| 32 |
31
|
a1i |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
| 33 |
3
|
nmbdoplbi |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 34 |
19 33
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 36 |
27
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 37 |
10
|
a1i |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 38 |
|
normcl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 39 |
|
remulcl |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ 𝑥 ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 40 |
10 38 39
|
sylancr |
⊢ ( 𝑥 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 42 |
1
|
nmbdoplbi |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 44 |
|
1re |
⊢ 1 ∈ ℝ |
| 45 |
|
nmopge0 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ 𝑇 ) ) |
| 46 |
1 6 45
|
mp2b |
⊢ 0 ≤ ( normop ‘ 𝑇 ) |
| 47 |
10 46
|
pm3.2i |
⊢ ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 ≤ ( normop ‘ 𝑇 ) ) |
| 48 |
|
lemul2a |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 ≤ ( normop ‘ 𝑇 ) ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) · 1 ) ) |
| 49 |
47 48
|
mp3anl3 |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) · 1 ) ) |
| 50 |
44 49
|
mpanl2 |
⊢ ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) · 1 ) ) |
| 51 |
38 50
|
sylan |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) · 1 ) ) |
| 52 |
10
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 53 |
52
|
mulridi |
⊢ ( ( normop ‘ 𝑇 ) · 1 ) = ( normop ‘ 𝑇 ) |
| 54 |
51 53
|
breqtrdi |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 55 |
36 41 37 43 54
|
letrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 56 |
|
nmopge0 |
⊢ ( ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ) |
| 57 |
3 4 56
|
mp2b |
⊢ 0 ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) |
| 58 |
25 57
|
pm3.2i |
⊢ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ∈ ℝ ∧ 0 ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ) |
| 59 |
|
lemul2a |
⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ∈ ℝ ∧ 0 ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ) |
| 60 |
58 59
|
mp3anl3 |
⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ) |
| 61 |
36 37 55 60
|
syl21anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ) |
| 62 |
23 30 32 35 61
|
letrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ) |
| 63 |
18 62
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) ) |
| 64 |
1
|
nmopadji |
⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) = ( normop ‘ 𝑇 ) |
| 65 |
64
|
oveq1i |
⊢ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) = ( ( normop ‘ 𝑇 ) · ( normop ‘ 𝑇 ) ) |
| 66 |
52
|
sqvali |
⊢ ( ( normop ‘ 𝑇 ) ↑ 2 ) = ( ( normop ‘ 𝑇 ) · ( normop ‘ 𝑇 ) ) |
| 67 |
65 66
|
eqtr4i |
⊢ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) · ( normop ‘ 𝑇 ) ) = ( ( normop ‘ 𝑇 ) ↑ 2 ) |
| 68 |
63 67
|
breqtrdi |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) ↑ 2 ) ) |
| 69 |
68
|
ex |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑇 ) ↑ 2 ) ) ) |
| 70 |
15 69
|
mprgbir |
⊢ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑇 ) ↑ 2 ) |
| 71 |
|
nmopge0 |
⊢ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 72 |
8 71
|
ax-mp |
⊢ 0 ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) |
| 73 |
3 1
|
bdopcoi |
⊢ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ∈ BndLinOp |
| 74 |
|
nmopre |
⊢ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ∈ BndLinOp → ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ∈ ℝ ) |
| 75 |
73 74
|
ax-mp |
⊢ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ∈ ℝ |
| 76 |
75
|
sqrtcli |
⊢ ( 0 ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) → ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ∈ ℝ ) |
| 77 |
|
rexr |
⊢ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ∈ ℝ → ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ∈ ℝ* ) |
| 78 |
72 76 77
|
mp2b |
⊢ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ∈ ℝ* |
| 79 |
|
nmopub |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ∈ ℝ* ) → ( ( normop ‘ 𝑇 ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ) ) ) |
| 80 |
7 78 79
|
mp2an |
⊢ ( ( normop ‘ 𝑇 ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ) ) |
| 81 |
19 20
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 82 |
|
hicl |
⊢ ( ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ∈ ℂ ) |
| 83 |
81 82
|
mpancom |
⊢ ( 𝑥 ∈ ℋ → ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ∈ ℂ ) |
| 84 |
83
|
abscld |
⊢ ( 𝑥 ∈ ℋ → ( abs ‘ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) ∈ ℝ ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( abs ‘ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) ∈ ℝ ) |
| 86 |
22 38
|
remulcld |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 88 |
75
|
a1i |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ∈ ℝ ) |
| 89 |
|
bcs |
⊢ ( ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) ≤ ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ) |
| 90 |
81 89
|
mpancom |
⊢ ( 𝑥 ∈ ℋ → ( abs ‘ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) ≤ ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ) |
| 91 |
90
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( abs ‘ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) ≤ ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ) |
| 92 |
5 7
|
hococli |
⊢ ( 𝑥 ∈ ℋ → ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ∈ ℋ ) |
| 93 |
|
normcl |
⊢ ( ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 94 |
92 93
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 96 |
38
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 97 |
|
normge0 |
⊢ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 98 |
19 20 97
|
3syl |
⊢ ( 𝑥 ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 99 |
22 98
|
jca |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 100 |
99
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 101 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ 𝑥 ) ≤ 1 ) |
| 102 |
|
lemul2a |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · 1 ) ) |
| 103 |
44 102
|
mp3anl2 |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · 1 ) ) |
| 104 |
96 100 101 103
|
syl21anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · 1 ) ) |
| 105 |
22
|
recnd |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 106 |
105
|
mulridd |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · 1 ) = ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 107 |
106 17
|
eqtr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · 1 ) = ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · 1 ) = ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 109 |
104 108
|
breqtrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 110 |
|
remulcl |
⊢ ( ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ∈ ℝ ∧ ( normℎ ‘ 𝑥 ) ∈ ℝ ) → ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 111 |
75 38 110
|
sylancr |
⊢ ( 𝑥 ∈ ℋ → ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 113 |
73
|
nmbdoplbi |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ) |
| 115 |
75 72
|
pm3.2i |
⊢ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ∈ ℝ ∧ 0 ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 116 |
|
lemul2a |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ∈ ℝ ∧ 0 ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · 1 ) ) |
| 117 |
115 116
|
mp3anl3 |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · 1 ) ) |
| 118 |
44 117
|
mpanl2 |
⊢ ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · 1 ) ) |
| 119 |
38 118
|
sylan |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · 1 ) ) |
| 120 |
75
|
recni |
⊢ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ∈ ℂ |
| 121 |
120
|
mulridi |
⊢ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · 1 ) = ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) |
| 122 |
119 121
|
breqtrdi |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 123 |
95 112 88 114 122
|
letrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 124 |
87 95 88 109 123
|
letrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) · ( normℎ ‘ 𝑥 ) ) ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 125 |
85 87 88 91 124
|
letrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( abs ‘ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 126 |
|
resqcl |
⊢ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ∈ ℝ ) |
| 127 |
|
sqge0 |
⊢ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → 0 ≤ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 128 |
126 127
|
absidd |
⊢ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → ( abs ‘ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 129 |
19 26 128
|
3syl |
⊢ ( 𝑥 ∈ ℋ → ( abs ‘ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 130 |
|
normsq |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) |
| 131 |
19 130
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) |
| 132 |
|
bdopadj |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
| 133 |
3 132
|
ax-mp |
⊢ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ |
| 134 |
|
adj2 |
⊢ ( ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ) ) |
| 135 |
133 134
|
mp3an1 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ) ) |
| 136 |
19 135
|
mpancom |
⊢ ( 𝑥 ∈ ℋ → ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ) ) |
| 137 |
|
bdopadj |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ ) |
| 138 |
|
adjadj |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
| 139 |
1 137 138
|
mp2b |
⊢ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 |
| 140 |
139
|
fveq1i |
⊢ ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) |
| 141 |
140
|
oveq2i |
⊢ ( ( 𝑇 ‘ 𝑥 ) ·ih ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) |
| 142 |
136 141
|
eqtr2di |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 143 |
131 142
|
eqtrd |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) = ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 144 |
143
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( abs ‘ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) = ( abs ‘ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) ) |
| 145 |
129 144
|
eqtr3d |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) = ( abs ‘ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) = ( abs ‘ ( ( ( adjℎ ‘ 𝑇 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) ) |
| 147 |
75
|
sqsqrti |
⊢ ( 0 ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) → ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) = ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 148 |
8 71 147
|
mp2b |
⊢ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) = ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) |
| 149 |
148
|
a1i |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) = ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 150 |
125 146 149
|
3brtr4d |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ≤ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) ) |
| 151 |
|
normge0 |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 152 |
19 151
|
syl |
⊢ ( 𝑥 ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 153 |
8 71 76
|
mp2b |
⊢ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ∈ ℝ |
| 154 |
75
|
sqrtge0i |
⊢ ( 0 ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) → 0 ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ) |
| 155 |
8 71 154
|
mp2b |
⊢ 0 ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 156 |
|
le2sq |
⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∧ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↔ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ≤ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) ) ) |
| 157 |
153 155 156
|
mpanr12 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↔ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ≤ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) ) ) |
| 158 |
27 152 157
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↔ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ≤ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) ) ) |
| 159 |
158
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↔ ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ≤ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) ) ) |
| 160 |
150 159
|
mpbird |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ) |
| 161 |
160
|
ex |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ) ) |
| 162 |
80 161
|
mprgbir |
⊢ ( normop ‘ 𝑇 ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) |
| 163 |
10 153
|
le2sqi |
⊢ ( ( 0 ≤ ( normop ‘ 𝑇 ) ∧ 0 ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ) → ( ( normop ‘ 𝑇 ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↔ ( ( normop ‘ 𝑇 ) ↑ 2 ) ≤ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) ) ) |
| 164 |
46 155 163
|
mp2an |
⊢ ( ( normop ‘ 𝑇 ) ≤ ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↔ ( ( normop ‘ 𝑇 ) ↑ 2 ) ≤ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) ) |
| 165 |
162 164
|
mpbi |
⊢ ( ( normop ‘ 𝑇 ) ↑ 2 ) ≤ ( ( √ ‘ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ↑ 2 ) |
| 166 |
165 148
|
breqtri |
⊢ ( ( normop ‘ 𝑇 ) ↑ 2 ) ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) |
| 167 |
75 11
|
letri3i |
⊢ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) = ( ( normop ‘ 𝑇 ) ↑ 2 ) ↔ ( ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑇 ) ↑ 2 ) ∧ ( ( normop ‘ 𝑇 ) ↑ 2 ) ≤ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) ) ) |
| 168 |
70 166 167
|
mpbir2an |
⊢ ( normop ‘ ( ( adjℎ ‘ 𝑇 ) ∘ 𝑇 ) ) = ( ( normop ‘ 𝑇 ) ↑ 2 ) |