| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) ) |
| 3 |
|
id |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
| 4 |
3 3
|
oveq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ·ih 𝐴 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 5 |
2 4
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ↔ ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 6 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
| 7 |
6
|
normsqi |
⊢ ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
| 8 |
5 7
|
dedth |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |