| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` A ) = ( normh ` if ( A e. ~H , A , 0h ) ) ) |
| 2 |
1
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` A ) ^ 2 ) = ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) ) |
| 3 |
|
id |
|- ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) ) |
| 4 |
3 3
|
oveq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( A .ih A ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) |
| 5 |
2 4
|
eqeq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` A ) ^ 2 ) = ( A .ih A ) <-> ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) ) |
| 6 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
| 7 |
6
|
normsqi |
|- ( ( normh ` if ( A e. ~H , A , 0h ) ) ^ 2 ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) |
| 8 |
5 7
|
dedth |
|- ( A e. ~H -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) |