| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 2 |
|
nmopgtmnf |
⊢ ( 𝑇 : ℋ ⟶ ℋ → -∞ < ( normop ‘ 𝑇 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑇 ∈ BndLinOp → -∞ < ( normop ‘ 𝑇 ) ) |
| 4 |
|
elbdop |
⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) < +∞ ) ) |
| 5 |
4
|
simprbi |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) < +∞ ) |
| 6 |
|
nmopxr |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) ∈ ℝ* ) |
| 7 |
|
xrrebnd |
⊢ ( ( normop ‘ 𝑇 ) ∈ ℝ* → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( -∞ < ( normop ‘ 𝑇 ) ∧ ( normop ‘ 𝑇 ) < +∞ ) ) ) |
| 8 |
1 6 7
|
3syl |
⊢ ( 𝑇 ∈ BndLinOp → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( -∞ < ( normop ‘ 𝑇 ) ∧ ( normop ‘ 𝑇 ) < +∞ ) ) ) |
| 9 |
3 5 8
|
mpbir2and |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |