| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bdopf |
|- ( T e. BndLinOp -> T : ~H --> ~H ) |
| 2 |
|
nmopgtmnf |
|- ( T : ~H --> ~H -> -oo < ( normop ` T ) ) |
| 3 |
1 2
|
syl |
|- ( T e. BndLinOp -> -oo < ( normop ` T ) ) |
| 4 |
|
elbdop |
|- ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) < +oo ) ) |
| 5 |
4
|
simprbi |
|- ( T e. BndLinOp -> ( normop ` T ) < +oo ) |
| 6 |
|
nmopxr |
|- ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) |
| 7 |
|
xrrebnd |
|- ( ( normop ` T ) e. RR* -> ( ( normop ` T ) e. RR <-> ( -oo < ( normop ` T ) /\ ( normop ` T ) < +oo ) ) ) |
| 8 |
1 6 7
|
3syl |
|- ( T e. BndLinOp -> ( ( normop ` T ) e. RR <-> ( -oo < ( normop ` T ) /\ ( normop ` T ) < +oo ) ) ) |
| 9 |
3 5 8
|
mpbir2and |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |