Metamath Proof Explorer


Theorem lemul2a

Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion lemul2a ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴𝐵 ) → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lemul1a ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴𝐵 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) )
2 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
3 recn ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ )
4 mulcom ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) )
5 2 3 4 syl2an ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) )
6 5 adantrr ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) )
7 6 3adant2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) )
8 7 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴𝐵 ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) )
9 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
10 mulcom ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) )
11 9 3 10 syl2an ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) )
12 11 adantrr ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) )
13 12 3adant1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) )
14 13 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴𝐵 ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) )
15 1 8 14 3brtr3d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴𝐵 ) → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) )