Metamath Proof Explorer


Theorem pjclem4a

Description: Lemma for projection commutation theorem. (Contributed by NM, 2-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjclem1.1
|- G e. CH
pjclem1.2
|- H e. CH
Assertion pjclem4a
|- ( A e. ( G i^i H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A )

Proof

Step Hyp Ref Expression
1 pjclem1.1
 |-  G e. CH
2 pjclem1.2
 |-  H e. CH
3 elin
 |-  ( A e. ( G i^i H ) <-> ( A e. G /\ A e. H ) )
4 2 cheli
 |-  ( A e. H -> A e. ~H )
5 4 adantl
 |-  ( ( A e. G /\ A e. H ) -> A e. ~H )
6 1 2 pjcoi
 |-  ( A e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) )
7 5 6 syl
 |-  ( ( A e. G /\ A e. H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) )
8 pjid
 |-  ( ( H e. CH /\ A e. H ) -> ( ( projh ` H ) ` A ) = A )
9 2 8 mpan
 |-  ( A e. H -> ( ( projh ` H ) ` A ) = A )
10 eleq1
 |-  ( ( ( projh ` H ) ` A ) = A -> ( ( ( projh ` H ) ` A ) e. G <-> A e. G ) )
11 pjid
 |-  ( ( G e. CH /\ ( ( projh ` H ) ` A ) e. G ) -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) )
12 1 11 mpan
 |-  ( ( ( projh ` H ) ` A ) e. G -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) )
13 10 12 syl6bir
 |-  ( ( ( projh ` H ) ` A ) = A -> ( A e. G -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) ) )
14 eqeq2
 |-  ( ( ( projh ` H ) ` A ) = A -> ( ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = A ) )
15 13 14 sylibd
 |-  ( ( ( projh ` H ) ` A ) = A -> ( A e. G -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = A ) )
16 9 15 syl
 |-  ( A e. H -> ( A e. G -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = A ) )
17 16 impcom
 |-  ( ( A e. G /\ A e. H ) -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = A )
18 7 17 eqtrd
 |-  ( ( A e. G /\ A e. H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A )
19 3 18 sylbi
 |-  ( A e. ( G i^i H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A )