Step |
Hyp |
Ref |
Expression |
1 |
|
pjclem1.1 |
|- G e. CH |
2 |
|
pjclem1.2 |
|- H e. CH |
3 |
|
elin |
|- ( A e. ( G i^i H ) <-> ( A e. G /\ A e. H ) ) |
4 |
2
|
cheli |
|- ( A e. H -> A e. ~H ) |
5 |
4
|
adantl |
|- ( ( A e. G /\ A e. H ) -> A e. ~H ) |
6 |
1 2
|
pjcoi |
|- ( A e. ~H -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) ) |
7 |
5 6
|
syl |
|- ( ( A e. G /\ A e. H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) ) |
8 |
|
pjid |
|- ( ( H e. CH /\ A e. H ) -> ( ( projh ` H ) ` A ) = A ) |
9 |
2 8
|
mpan |
|- ( A e. H -> ( ( projh ` H ) ` A ) = A ) |
10 |
|
eleq1 |
|- ( ( ( projh ` H ) ` A ) = A -> ( ( ( projh ` H ) ` A ) e. G <-> A e. G ) ) |
11 |
|
pjid |
|- ( ( G e. CH /\ ( ( projh ` H ) ` A ) e. G ) -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) ) |
12 |
1 11
|
mpan |
|- ( ( ( projh ` H ) ` A ) e. G -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) ) |
13 |
10 12
|
syl6bir |
|- ( ( ( projh ` H ) ` A ) = A -> ( A e. G -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) ) ) |
14 |
|
eqeq2 |
|- ( ( ( projh ` H ) ` A ) = A -> ( ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = A ) ) |
15 |
13 14
|
sylibd |
|- ( ( ( projh ` H ) ` A ) = A -> ( A e. G -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = A ) ) |
16 |
9 15
|
syl |
|- ( A e. H -> ( A e. G -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = A ) ) |
17 |
16
|
impcom |
|- ( ( A e. G /\ A e. H ) -> ( ( projh ` G ) ` ( ( projh ` H ) ` A ) ) = A ) |
18 |
7 17
|
eqtrd |
|- ( ( A e. G /\ A e. H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A ) |
19 |
3 18
|
sylbi |
|- ( A e. ( G i^i H ) -> ( ( ( projh ` G ) o. ( projh ` H ) ) ` A ) = A ) |