Metamath Proof Explorer


Theorem plendxnocndx

Description: The slot for the orthocomplementation is not the slot for the order in an extensible structure. Formerly part of proof for thlle . (Contributed by AV, 11-Nov-2024)

Ref Expression
Assertion plendxnocndx
|- ( le ` ndx ) =/= ( oc ` ndx )

Proof

Step Hyp Ref Expression
1 10re
 |-  ; 1 0 e. RR
2 1nn0
 |-  1 e. NN0
3 0nn0
 |-  0 e. NN0
4 1nn
 |-  1 e. NN
5 0lt1
 |-  0 < 1
6 2 3 4 5 declt
 |-  ; 1 0 < ; 1 1
7 1 6 ltneii
 |-  ; 1 0 =/= ; 1 1
8 plendx
 |-  ( le ` ndx ) = ; 1 0
9 ocndx
 |-  ( oc ` ndx ) = ; 1 1
10 8 9 neeq12i
 |-  ( ( le ` ndx ) =/= ( oc ` ndx ) <-> ; 1 0 =/= ; 1 1 )
11 7 10 mpbir
 |-  ( le ` ndx ) =/= ( oc ` ndx )