Database
BASIC STRUCTURES
Extensible structures
Slot definitions
plendxnocndx
Metamath Proof Explorer
Description: The slot for the orthocomplementation is not the slot for the order in an
extensible structure. Formerly part of proof for thlle . (Contributed by AV , 11-Nov-2024)
Ref
Expression
Assertion
plendxnocndx
⊢ ≤ ndx ≠ oc ⁡ ndx
Proof
Step
Hyp
Ref
Expression
1
10re
⊢ 10 ∈ ℝ
2
1nn0
⊢ 1 ∈ ℕ 0
3
0nn0
⊢ 0 ∈ ℕ 0
4
1nn
⊢ 1 ∈ ℕ
5
0lt1
⊢ 0 < 1
6
2 3 4 5
declt
⊢ 10 < 11
7
1 6
ltneii
⊢ 10 ≠ 11
8
plendx
⊢ ≤ ndx = 10
9
ocndx
⊢ oc ⁡ ndx = 11
10
8 9
neeq12i
⊢ ≤ ndx ≠ oc ⁡ ndx ↔ 10 ≠ 11
11
7 10
mpbir
⊢ ≤ ndx ≠ oc ⁡ ndx