Metamath Proof Explorer


Theorem thlle

Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof shortened by AV, 11-Nov-2024)

Ref Expression
Hypotheses thlval.k K = toHL W
thlbas.c C = ClSubSp W
thlle.i I = toInc C
thlle.l ˙ = I
Assertion thlle ˙ = K

Proof

Step Hyp Ref Expression
1 thlval.k K = toHL W
2 thlbas.c C = ClSubSp W
3 thlle.i I = toInc C
4 thlle.l ˙ = I
5 pleid le = Slot ndx
6 plendxnocndx ndx oc ndx
7 5 6 setsnid I = I sSet oc ndx ocv W
8 4 7 eqtri ˙ = I sSet oc ndx ocv W
9 eqid ocv W = ocv W
10 1 2 3 9 thlval W V K = I sSet oc ndx ocv W
11 10 fveq2d W V K = I sSet oc ndx ocv W
12 8 11 eqtr4id W V ˙ = K
13 5 str0 =
14 2 fvexi C V
15 3 ipolerval C V x y | x y C x y = I
16 14 15 ax-mp x y | x y C x y = I
17 4 16 eqtr4i ˙ = x y | x y C x y
18 opabn0 x y | x y C x y x y x y C x y
19 vex x V
20 vex y V
21 19 20 prss x C y C x y C
22 elfvex x ClSubSp W W V
23 22 2 eleq2s x C W V
24 23 ad2antrr x C y C x y W V
25 21 24 sylanbr x y C x y W V
26 25 exlimivv x y x y C x y W V
27 18 26 sylbi x y | x y C x y W V
28 27 necon1bi ¬ W V x y | x y C x y =
29 17 28 eqtrid ¬ W V ˙ =
30 fvprc ¬ W V toHL W =
31 1 30 eqtrid ¬ W V K =
32 31 fveq2d ¬ W V K =
33 13 29 32 3eqtr4a ¬ W V ˙ = K
34 12 33 pm2.61i ˙ = K