Step |
Hyp |
Ref |
Expression |
1 |
|
thlval.k |
⊢ 𝐾 = ( toHL ‘ 𝑊 ) |
2 |
|
thlbas.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
3 |
|
thlle.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
4 |
|
thlle.l |
⊢ ≤ = ( le ‘ 𝐼 ) |
5 |
|
pleid |
⊢ le = Slot ( le ‘ ndx ) |
6 |
|
plendxnocndx |
⊢ ( le ‘ ndx ) ≠ ( oc ‘ ndx ) |
7 |
5 6
|
setsnid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
8 |
4 7
|
eqtri |
⊢ ≤ = ( le ‘ ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
9 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
10 |
1 2 3 9
|
thlval |
⊢ ( 𝑊 ∈ V → 𝐾 = ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑊 ∈ V → ( le ‘ 𝐾 ) = ( le ‘ ( 𝐼 sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ 𝑊 ) 〉 ) ) ) |
12 |
8 11
|
eqtr4id |
⊢ ( 𝑊 ∈ V → ≤ = ( le ‘ 𝐾 ) ) |
13 |
5
|
str0 |
⊢ ∅ = ( le ‘ ∅ ) |
14 |
2
|
fvexi |
⊢ 𝐶 ∈ V |
15 |
3
|
ipolerval |
⊢ ( 𝐶 ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ 𝐼 ) ) |
16 |
14 15
|
ax-mp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ 𝐼 ) |
17 |
4 16
|
eqtr4i |
⊢ ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } |
18 |
|
opabn0 |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } ≠ ∅ ↔ ∃ 𝑥 ∃ 𝑦 ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) ) |
19 |
|
vex |
⊢ 𝑥 ∈ V |
20 |
|
vex |
⊢ 𝑦 ∈ V |
21 |
19 20
|
prss |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐶 ) |
22 |
|
elfvex |
⊢ ( 𝑥 ∈ ( ClSubSp ‘ 𝑊 ) → 𝑊 ∈ V ) |
23 |
22 2
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐶 → 𝑊 ∈ V ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ⊆ 𝑦 ) → 𝑊 ∈ V ) |
25 |
21 24
|
sylanbr |
⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) → 𝑊 ∈ V ) |
26 |
25
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) → 𝑊 ∈ V ) |
27 |
18 26
|
sylbi |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } ≠ ∅ → 𝑊 ∈ V ) |
28 |
27
|
necon1bi |
⊢ ( ¬ 𝑊 ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐶 ∧ 𝑥 ⊆ 𝑦 ) } = ∅ ) |
29 |
17 28
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → ≤ = ∅ ) |
30 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( toHL ‘ 𝑊 ) = ∅ ) |
31 |
1 30
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐾 = ∅ ) |
32 |
31
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( le ‘ 𝐾 ) = ( le ‘ ∅ ) ) |
33 |
13 29 32
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ≤ = ( le ‘ 𝐾 ) ) |
34 |
12 33
|
pm2.61i |
⊢ ≤ = ( le ‘ 𝐾 ) |