Metamath Proof Explorer


Theorem ipolerval

Description: Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypothesis ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
Assertion ipolerval ( 𝐹𝑉 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = ( le ‘ 𝐼 ) )

Proof

Step Hyp Ref Expression
1 ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
2 simpl ( ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) → { 𝑥 , 𝑦 } ⊆ 𝐹 )
3 vex 𝑥 ∈ V
4 vex 𝑦 ∈ V
5 3 4 prss ( ( 𝑥𝐹𝑦𝐹 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐹 )
6 2 5 sylibr ( ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) → ( 𝑥𝐹𝑦𝐹 ) )
7 6 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐹𝑦𝐹 ) }
8 df-xp ( 𝐹 × 𝐹 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐹𝑦𝐹 ) }
9 7 8 sseqtrri { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⊆ ( 𝐹 × 𝐹 )
10 sqxpexg ( 𝐹𝑉 → ( 𝐹 × 𝐹 ) ∈ V )
11 ssexg ( ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⊆ ( 𝐹 × 𝐹 ) ∧ ( 𝐹 × 𝐹 ) ∈ V ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ∈ V )
12 9 10 11 sylancr ( 𝐹𝑉 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ∈ V )
13 ipostr ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) Struct ⟨ 1 , 1 1 ⟩
14 pleid le = Slot ( le ‘ ndx )
15 snsspr1 { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ } ⊆ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ }
16 ssun2 { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } )
17 15 16 sstri { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } )
18 13 14 17 strfv ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ∈ V → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = ( le ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) ) )
19 12 18 syl ( 𝐹𝑉 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = ( le ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) ) )
20 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) }
21 1 20 ipoval ( 𝐹𝑉𝐼 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )
22 21 fveq2d ( 𝐹𝑉 → ( le ‘ 𝐼 ) = ( le ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) ) )
23 19 22 eqtr4d ( 𝐹𝑉 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = ( le ‘ 𝐼 ) )