Metamath Proof Explorer


Theorem ipoval

Description: Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
ipoval.l = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) }
Assertion ipoval ( 𝐹𝑉𝐼 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )

Proof

Step Hyp Ref Expression
1 ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipoval.l = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) }
3 elex ( 𝐹𝑉𝐹 ∈ V )
4 vex 𝑓 ∈ V
5 4 4 xpex ( 𝑓 × 𝑓 ) ∈ V
6 simpl ( ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) → { 𝑥 , 𝑦 } ⊆ 𝑓 )
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 prss ( ( 𝑥𝑓𝑦𝑓 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝑓 )
10 6 9 sylibr ( ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) → ( 𝑥𝑓𝑦𝑓 ) )
11 10 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝑓𝑦𝑓 ) }
12 df-xp ( 𝑓 × 𝑓 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝑓𝑦𝑓 ) }
13 11 12 sseqtrri { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) } ⊆ ( 𝑓 × 𝑓 )
14 5 13 ssexi { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) } ∈ V
15 14 a1i ( 𝑓 = 𝐹 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) } ∈ V )
16 sseq2 ( 𝑓 = 𝐹 → ( { 𝑥 , 𝑦 } ⊆ 𝑓 ↔ { 𝑥 , 𝑦 } ⊆ 𝐹 ) )
17 16 anbi1d ( 𝑓 = 𝐹 → ( ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) ) )
18 17 opabbidv ( 𝑓 = 𝐹 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } )
19 18 2 eqtr4di ( 𝑓 = 𝐹 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) } = )
20 simpl ( ( 𝑓 = 𝐹𝑜 = ) → 𝑓 = 𝐹 )
21 20 opeq2d ( ( 𝑓 = 𝐹𝑜 = ) → ⟨ ( Base ‘ ndx ) , 𝑓 ⟩ = ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ )
22 simpr ( ( 𝑓 = 𝐹𝑜 = ) → 𝑜 = )
23 22 fveq2d ( ( 𝑓 = 𝐹𝑜 = ) → ( ordTop ‘ 𝑜 ) = ( ordTop ‘ ) )
24 23 opeq2d ( ( 𝑓 = 𝐹𝑜 = ) → ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ 𝑜 ) ⟩ = ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ )
25 21 24 preq12d ( ( 𝑓 = 𝐹𝑜 = ) → { ⟨ ( Base ‘ ndx ) , 𝑓 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ 𝑜 ) ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ } )
26 22 opeq2d ( ( 𝑓 = 𝐹𝑜 = ) → ⟨ ( le ‘ ndx ) , 𝑜 ⟩ = ⟨ ( le ‘ ndx ) , ⟩ )
27 id ( 𝑓 = 𝐹𝑓 = 𝐹 )
28 rabeq ( 𝑓 = 𝐹 → { 𝑦𝑓 ∣ ( 𝑦𝑥 ) = ∅ } = { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } )
29 28 unieqd ( 𝑓 = 𝐹 { 𝑦𝑓 ∣ ( 𝑦𝑥 ) = ∅ } = { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } )
30 27 29 mpteq12dv ( 𝑓 = 𝐹 → ( 𝑥𝑓 { 𝑦𝑓 ∣ ( 𝑦𝑥 ) = ∅ } ) = ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) )
31 30 adantr ( ( 𝑓 = 𝐹𝑜 = ) → ( 𝑥𝑓 { 𝑦𝑓 ∣ ( 𝑦𝑥 ) = ∅ } ) = ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) )
32 31 opeq2d ( ( 𝑓 = 𝐹𝑜 = ) → ⟨ ( oc ‘ ndx ) , ( 𝑥𝑓 { 𝑦𝑓 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ = ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ )
33 26 32 preq12d ( ( 𝑓 = 𝐹𝑜 = ) → { ⟨ ( le ‘ ndx ) , 𝑜 ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝑓 { 𝑦𝑓 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } = { ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } )
34 25 33 uneq12d ( ( 𝑓 = 𝐹𝑜 = ) → ( { ⟨ ( Base ‘ ndx ) , 𝑓 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ 𝑜 ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , 𝑜 ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝑓 { 𝑦𝑓 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )
35 15 19 34 csbied2 ( 𝑓 = 𝐹 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) } / 𝑜 ( { ⟨ ( Base ‘ ndx ) , 𝑓 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ 𝑜 ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , 𝑜 ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝑓 { 𝑦𝑓 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )
36 df-ipo toInc = ( 𝑓 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑓𝑥𝑦 ) } / 𝑜 ( { ⟨ ( Base ‘ ndx ) , 𝑓 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ 𝑜 ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , 𝑜 ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝑓 { 𝑦𝑓 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )
37 prex { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ } ∈ V
38 prex { ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ∈ V
39 37 38 unex ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) ∈ V
40 35 36 39 fvmpt ( 𝐹 ∈ V → ( toInc ‘ 𝐹 ) = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )
41 1 40 syl5eq ( 𝐹 ∈ V → 𝐼 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )
42 3 41 syl ( 𝐹𝑉𝐼 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )