Metamath Proof Explorer


Theorem ipoval

Description: Value of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses ipoval.i I=toIncF
ipoval.l ˙=xy|xyFxy
Assertion ipoval FVI=BasendxFTopSetndxordTop˙ndx˙ocndxxFyF|yx=

Proof

Step Hyp Ref Expression
1 ipoval.i I=toIncF
2 ipoval.l ˙=xy|xyFxy
3 elex FVFV
4 vex fV
5 4 4 xpex f×fV
6 simpl xyfxyxyf
7 vex xV
8 vex yV
9 7 8 prss xfyfxyf
10 6 9 sylibr xyfxyxfyf
11 10 ssopab2i xy|xyfxyxy|xfyf
12 df-xp f×f=xy|xfyf
13 11 12 sseqtrri xy|xyfxyf×f
14 5 13 ssexi xy|xyfxyV
15 14 a1i f=Fxy|xyfxyV
16 sseq2 f=FxyfxyF
17 16 anbi1d f=FxyfxyxyFxy
18 17 opabbidv f=Fxy|xyfxy=xy|xyFxy
19 18 2 eqtr4di f=Fxy|xyfxy=˙
20 simpl f=Fo=˙f=F
21 20 opeq2d f=Fo=˙Basendxf=BasendxF
22 simpr f=Fo=˙o=˙
23 22 fveq2d f=Fo=˙ordTopo=ordTop˙
24 23 opeq2d f=Fo=˙TopSetndxordTopo=TopSetndxordTop˙
25 21 24 preq12d f=Fo=˙BasendxfTopSetndxordTopo=BasendxFTopSetndxordTop˙
26 22 opeq2d f=Fo=˙ndxo=ndx˙
27 id f=Ff=F
28 rabeq f=Fyf|yx==yF|yx=
29 28 unieqd f=Fyf|yx==yF|yx=
30 27 29 mpteq12dv f=Fxfyf|yx==xFyF|yx=
31 30 adantr f=Fo=˙xfyf|yx==xFyF|yx=
32 31 opeq2d f=Fo=˙ocndxxfyf|yx==ocndxxFyF|yx=
33 26 32 preq12d f=Fo=˙ndxoocndxxfyf|yx==ndx˙ocndxxFyF|yx=
34 25 33 uneq12d f=Fo=˙BasendxfTopSetndxordTopondxoocndxxfyf|yx==BasendxFTopSetndxordTop˙ndx˙ocndxxFyF|yx=
35 15 19 34 csbied2 f=Fxy|xyfxy/oBasendxfTopSetndxordTopondxoocndxxfyf|yx==BasendxFTopSetndxordTop˙ndx˙ocndxxFyF|yx=
36 df-ipo toInc=fVxy|xyfxy/oBasendxfTopSetndxordTopondxoocndxxfyf|yx=
37 prex BasendxFTopSetndxordTop˙V
38 prex ndx˙ocndxxFyF|yx=V
39 37 38 unex BasendxFTopSetndxordTop˙ndx˙ocndxxFyF|yx=V
40 35 36 39 fvmpt FVtoIncF=BasendxFTopSetndxordTop˙ndx˙ocndxxFyF|yx=
41 1 40 eqtrid FVI=BasendxFTopSetndxordTop˙ndx˙ocndxxFyF|yx=
42 3 41 syl FVI=BasendxFTopSetndxordTop˙ndx˙ocndxxFyF|yx=