Metamath Proof Explorer


Definition df-ipo

Description: For any family of sets, define the poset of that family ordered by inclusion. See ipobas , ipolerval , and ipole for its contract.

EDITORIAL: I'm not thrilled with the name. Any suggestions? (Contributed by Stefan O'Rear, 30-Jan-2015) (New usage is discouraged.)

Ref Expression
Assertion df-ipo toInc=fVxy|xyfxy/oBasendxfTopSetndxordTopondxoocndxxfyf|yx=

Detailed syntax breakdown

Step Hyp Ref Expression
0 cipo classtoInc
1 vf setvarf
2 cvv classV
3 vx setvarx
4 vy setvary
5 3 cv setvarx
6 4 cv setvary
7 5 6 cpr classxy
8 1 cv setvarf
9 7 8 wss wffxyf
10 5 6 wss wffxy
11 9 10 wa wffxyfxy
12 11 3 4 copab classxy|xyfxy
13 vo setvaro
14 cbs classBase
15 cnx classndx
16 15 14 cfv classBasendx
17 16 8 cop classBasendxf
18 cts classTopSet
19 15 18 cfv classTopSetndx
20 cordt classordTop
21 13 cv setvaro
22 21 20 cfv classordTopo
23 19 22 cop classTopSetndxordTopo
24 17 23 cpr classBasendxfTopSetndxordTopo
25 cple classle
26 15 25 cfv classndx
27 26 21 cop classndxo
28 coc classoc
29 15 28 cfv classocndx
30 6 5 cin classyx
31 c0 class
32 30 31 wceq wffyx=
33 32 4 8 crab classyf|yx=
34 33 cuni classyf|yx=
35 3 8 34 cmpt classxfyf|yx=
36 29 35 cop classocndxxfyf|yx=
37 27 36 cpr classndxoocndxxfyf|yx=
38 24 37 cun classBasendxfTopSetndxordTopondxoocndxxfyf|yx=
39 13 12 38 csb classxy|xyfxy/oBasendxfTopSetndxordTopondxoocndxxfyf|yx=
40 1 2 39 cmpt classfVxy|xyfxy/oBasendxfTopSetndxordTopondxoocndxxfyf|yx=
41 0 40 wceq wfftoInc=fVxy|xyfxy/oBasendxfTopSetndxordTopondxoocndxxfyf|yx=