Description: For any family of sets, define the poset of that family ordered by inclusion. See ipobas , ipolerval , and ipole for its contract.
EDITORIAL: I'm not thrilled with the name. Any suggestions? (Contributed by Stefan O'Rear, 30-Jan-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ipo | |- toInc = ( f e. _V |-> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cipo | |- toInc |
|
| 1 | vf | |- f |
|
| 2 | cvv | |- _V |
|
| 3 | vx | |- x |
|
| 4 | vy | |- y |
|
| 5 | 3 | cv | |- x |
| 6 | 4 | cv | |- y |
| 7 | 5 6 | cpr | |- { x , y } |
| 8 | 1 | cv | |- f |
| 9 | 7 8 | wss | |- { x , y } C_ f |
| 10 | 5 6 | wss | |- x C_ y |
| 11 | 9 10 | wa | |- ( { x , y } C_ f /\ x C_ y ) |
| 12 | 11 3 4 | copab | |- { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } |
| 13 | vo | |- o |
|
| 14 | cbs | |- Base |
|
| 15 | cnx | |- ndx |
|
| 16 | 15 14 | cfv | |- ( Base ` ndx ) |
| 17 | 16 8 | cop | |- <. ( Base ` ndx ) , f >. |
| 18 | cts | |- TopSet |
|
| 19 | 15 18 | cfv | |- ( TopSet ` ndx ) |
| 20 | cordt | |- ordTop |
|
| 21 | 13 | cv | |- o |
| 22 | 21 20 | cfv | |- ( ordTop ` o ) |
| 23 | 19 22 | cop | |- <. ( TopSet ` ndx ) , ( ordTop ` o ) >. |
| 24 | 17 23 | cpr | |- { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } |
| 25 | cple | |- le |
|
| 26 | 15 25 | cfv | |- ( le ` ndx ) |
| 27 | 26 21 | cop | |- <. ( le ` ndx ) , o >. |
| 28 | coc | |- oc |
|
| 29 | 15 28 | cfv | |- ( oc ` ndx ) |
| 30 | 6 5 | cin | |- ( y i^i x ) |
| 31 | c0 | |- (/) |
|
| 32 | 30 31 | wceq | |- ( y i^i x ) = (/) |
| 33 | 32 4 8 | crab | |- { y e. f | ( y i^i x ) = (/) } |
| 34 | 33 | cuni | |- U. { y e. f | ( y i^i x ) = (/) } |
| 35 | 3 8 34 | cmpt | |- ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) |
| 36 | 29 35 | cop | |- <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. |
| 37 | 27 36 | cpr | |- { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } |
| 38 | 24 37 | cun | |- ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) |
| 39 | 13 12 38 | csb | |- [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) |
| 40 | 1 2 39 | cmpt | |- ( f e. _V |-> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) ) |
| 41 | 0 40 | wceq | |- toInc = ( f e. _V |-> [_ { <. x , y >. | ( { x , y } C_ f /\ x C_ y ) } / o ]_ ( { <. ( Base ` ndx ) , f >. , <. ( TopSet ` ndx ) , ( ordTop ` o ) >. } u. { <. ( le ` ndx ) , o >. , <. ( oc ` ndx ) , ( x e. f |-> U. { y e. f | ( y i^i x ) = (/) } ) >. } ) ) |