Metamath Proof Explorer


Theorem ipobas

Description: Base set of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015) (Revised by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypothesis ipoval.i I=toIncF
Assertion ipobas FVF=BaseI

Proof

Step Hyp Ref Expression
1 ipoval.i I=toIncF
2 ipostr BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=Struct111
3 baseid Base=SlotBasendx
4 snsspr1 BasendxFBasendxFTopSetndxordTopxy|xyFxy
5 ssun1 BasendxFTopSetndxordTopxy|xyFxyBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
6 4 5 sstri BasendxFBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
7 2 3 6 strfv FVF=BaseBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
8 eqid xy|xyFxy=xy|xyFxy
9 1 8 ipoval FVI=BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
10 9 fveq2d FVBaseI=BaseBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
11 7 10 eqtr4d FVF=BaseI