Step |
Hyp |
Ref |
Expression |
1 |
|
ipoval.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
2 |
|
ipostr |
⊢ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) ⟩ } ) Struct ⟨ 1 , ; 1 1 ⟩ |
3 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
4 |
|
snsspr1 |
⊢ { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) ⟩ } |
5 |
|
ssun1 |
⊢ { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) ⟩ } ) |
6 |
4 5
|
sstri |
⊢ { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) ⟩ } ) |
7 |
2 3 6
|
strfv |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) ⟩ } ) ) ) |
8 |
|
eqid |
⊢ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } |
9 |
1 8
|
ipoval |
⊢ ( 𝐹 ∈ 𝑉 → 𝐼 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) ⟩ } ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝐹 ∈ 𝑉 → ( Base ‘ 𝐼 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) ⟩ } ) ) ) |
11 |
7 10
|
eqtr4d |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |